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Abstract— Many computer vision tasks rely on precise
object localization and refining bounding boxes. Complex
situations, including object rotations and varied scales, are
typically too much for traditional approaches to handle. To
update bounding boxes and perform orientation-aware
localization, this research suggests an adaptive Particle Swarm
Optimization (PSO) algorithm. During optimisation, the
method takes orientation into account while representing
particles and uses adaptive processes to tweak inertia weight
and velocity updates. We develop a new fitness function that
considers aspect ratio, orientation, and overlap for efficient
evaluation. In comparison to conventional methods, the
suggested strategy greatly enhances localization accuracy and
robustness, according to the experimental results. This is
particularly evident when objects undergo rotation or scaling.
Based on these results, adaptive PSO seems like a promising
tool for improving computer vision tasks, like object detection
and localization.
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I. INTRODUCTION

One of the most fundamental tasks in computer
vision is precise object localization [1, 5, 8]. This has
numerous applications, including autonomous cars, medical
image analysis, robotics, and surveillance systems. Bounding
box refinement is a crucial part of localization since it aims
to precisely define the boundaries of an object inside an
image. When faced with complicated situations, such as
items with different sizes and orientations, traditional
approaches frequently fail to accurately localize them [3, 4,
12].

The ability to locate and fine-tune the bounding boxes of
objects with arbitrary orientations has many real-world
applications. To ensure safe navigation and decision-making,
autonomous driving systems rely on precise, multi-angle
vehicle and pedestrian localization [5, 10]. In a similar vein,
medical imaging relies on precisely defining tumors with
irregular forms to aid in diagnosis and therapy planning [7,
8].

Object localization and bounding box refinement are two
common current applications of deep learning techniques,
particularly convolutional neural networks (CNNs) [3, 4, 6].
Although CNN-based techniques have accomplished a lot,
they aren't always the most effective due to issues like
computational expense and not being able to generalize to
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objects with massive rotations or deformations [4, 6, 7].
Particle swarm optimization (PSO) and other alternative
methods provide hope for overcoming these obstacles. Image
processing jobs are among those that have benefited from
PSO, a metaheuristic algorithm that draws inspiration from
nature [1, 2, 9].
When using PSO for object localization, a significant
challenge is the efficient optimization of orientation
information. There are differing opinions among scholars
regarding the best way to represent orientation. Some say
that treating it as a separate parameter can result in less-than-
ideal solutions, while others suggest using quaternions or
other alternative representations [11]. This study aims to
develop an adaptive PSO method for orientation-aware

localization and bounding box refining. To improve
optimization, the suggested technique uses adaptive
mechanisms and  directly incorporates  orientation
information into the particle model.

When objects rotate or scale differently, the proposed
approach significantly enhances localization accuracy and
robustness compared to traditional methods. These findings
suggest that adaptive PSSO might be a useful tool for
enhancing object detection and localization, among other
computer vision tasks.

Il. MATERIALS AND METHODS

For orientation-aware localization and bounding box
refinement, this paper explores an adaptive particle swarm
optimization (PSO) method. We provide the methodology in
full [1, 2, 9] to facilitate its replication in future studies. We
provide a detailed description of new contributions, with
appropriate citations when necessary, in addition to a brief
summary of well-established approaches [3, 4, 6].
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Figure 1: Architecture for adaptive PSO-based
localization and bounding box refinement

A. Dataset

The main source for our research was the MS COCO
dataset, which is a diversified collection of images with
labelled borders [1]. We added to the dataset [3, 6] by
randomly rotating the initial bounding boxes between -45
degrees and 45 degrees. This let us make personalized
annotations that look like real-life situations where objects
are oriented in different ways [3, 6]. We then split the dataset
into two parts: one for training, which included 82,900
photos (or 70% of the data), and another for testing, which
included 35,400 images (or 30% of the data) [4, 5].
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B. Preprocessing

We scaled all pictures to 640 x 640 pixels for processing
consistency. We ensured numerical stability by normalising
pixel values to the range of [0, 1]. We created the first
bounding boxes using the dataset's default annotations.

C. Algorithm Implementation

We used a 5-dimensional vector to represent each
particle:

H — ("’Ci! Yiy Wy, h’-‘ia 95)

The coordinates of the centre of the bounding box are
denoted as xi,yi, where I'iw, Aih, and ni, 6 i denote the
directions. We developed a fitness function to evaluate the
quality of particles. The equation can be rewritten as

f(P) = a-IoU(P;,G) + B - AspectRatioPenalty(F;) 4+ 7 - OrientationPenalty(F;)
We denote the intersection of the union with the ground
truth as loU(P [i], G). The function AspectRatioPenalty (Pi)
penalizes aspect ratios that fall outside of the designated
range. The given parameters are [1:1, 1:3]. "Orientation
Penalty” Penalises orientation deviation with
OrientationPenalty(P i). Here are the weights: 0=0.6, 5=0.2,
and y=0.2.

Update on Velocity: The velocities of all particles were
revised by applying:

vi't = wof + eir(pi = 2) + cora(g’ — 2i)

The inertia weight underwent a dynamic alteration.

Winax — Wmin ¢

I

Values used: ®max=0.9, omin=0.4, c1=2, c2=2. Position
Update Rule:

W =Wmax —

t+1 ot t+
x,” =z, +v;

Intersection over Union (loU):
IoU — Area of Overlap
oY = Area of Union
Evaluates the overlap between predicted and ground truth

bounding boxes.
Localization Error:

N
1 .
Error = N Ié_l \/(il?z — $i,gt)2 + (yi- - yz',gt)z

Computation Time: Average time per image.
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I1l. RESULTS

The suggested adaptive PSO method does better at
orientation-aware localization and improving the bounding
boxes than the baselntersection-over-Union (loU) measures
how much the predicted and ground truth bounding boxes
overlap; localization error measures the average processing
time per image; and Intersection-over-Union (loU) measures
the distance between the predicted and ground truth center
points in terms of E. These are some of the most important



performance indicators that are used for evaluation.in terms
of E.

Metric Baseline Standard Proposed
CNN PSO Adaptive PSO
Average loU 0.78 0.82 0.89
Localization 124 10.7 6.3
Error (px)
Computation 125 145 135

Time (ms)

Analysis: The Adaptive PSO method did better than both
CNN-based and traditional PSO methods. It had the highest
loU (0.89), which meant that it overlapped with ground truth
bounding boxes accurately, and the lowest localization error
(6.3 pixels). Although it takes a little longer to compute than
the baseline CNN approach, it is still much faster than
regular PSO and has excellent computational efficiency.

Qualitative research, based on visual examination of
bounding box refinement samples, reveals that the adaptive
PSO approach outperforms the alternatives, particularly in
complex scenarios where objects rotate and scale differently.
Adaptive PSO consistently achieves accurate alignment,
working well with scaled and rotated objects in a variety of
situations. This contrasts with baseline CNN methods that
often do not take object orientation into account properly,
leading to misaligned bounding boxes, and standard PSO
that cannot handle tough edge cases like extreme rotations.

Algorithm : Adaptive PSO for Orientation-Aware Object
Localization and Bounding Box Refinement

Input:
e Dataset: D with annotated bounding boxes.
o Number of particles P.
e Maximum iterations T.
e Inertia weight parameters: ®max “min.
e Acceleration coefficients: €1: €z,
o Fitness function components: loU,
AspectRatioPenalty, OrientationPenalty.
Output:

Refined bounding boxes with optimized orientation and
scale.

Initialization:
-
1.1 Initialize P particles with random positions *i and
velocities vy

1.2 Each particle represents a 5 -dimensional vector:
(x;, v, wy, by, ;) .
1.3 Set global best position g and personal bests Bs for each
particle.
While
2.1 For each particle £ :
Evaluate fitness f (¥:) using:

t<T

f(x)=a-1o0U(X, G)— B - AspectRatioPenalty (X,) —y -

Update personal best s if f (£:) = f(;).

Update  global best § if f@)=f(g
2.2 Update Velocity:

Update particle velocities using:

Ti=w-Titepn-(F;—T)+epn- (%)

where 71.72 ~ U(0,1) and
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t
max _? ' (
2.3 Update Position:

e Update the position of each particle using the
equation:
;Hlj:x;t:'—l—vfﬁlj
e Ensure position constraints are respected (e.g.,
bounding box coordinates remain within image
boundaries).

2.4 Boundary Constraints:

w=w @ Wmin)

max ~

X

e If any component of xiﬁl" exceeds its allowable
range (e.g., center coordinates, width, height,
orientation), adjust it back to the nearest valid value.

Output: Refined bounding boxes (Xu Yo Wi hi6:) for all
particles, optimized for intersection-over-union (loU), aspect
ratio, and orientation consistency.

loU Convergence Over lterations

0.90
0.88 \/\/
0.86
0.84
——- CNN-Based Method
2 0.82 Standard PSO
Adaptive PSO
0.80 4
A
N
0.78 - Loy - - S
= 1 I , ,’ ~ N
0. 760 =~ HE "~ | S
. ~a P o~ ~
. s
~
0.74 4 i 3.
T T T T 1 T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Iterations
CNk-Based Standard PSO Adaptive PSO
07 y MM 00
| 0 Ground Truth | 1 Ground Truth 3 Ground Tuth
! 1 rediction 1 Prediction ) Prediction
254 | i 5
0
5 s b
0 ! 201 00
175 1751 s
150 I ' 1501 — 150
135 1251 15
100 1 10
1 B0 W0 B0 W B N0 W0 150 MW B ™0 % 40 WO 10 00 /0 MW B 40

Bounding Box Refinement with Rotation

) Ground Truth
600 - 205 nitial
1 optimized




Average Time Per Iteration: ©.0005s

Total Optimization Time: ©.02s
Average Time Per Iteration: ©.0@@5s

Computation Time Analysis:

Baseline CNN: ©.152@ seconds per image
Standard PSO: ©.4460 seconds per image
Adaptive PSO: ©.1685 seconds per image
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Ablation Study Results:
Aspect_Ratio_Penalty
True
False
True
False

Fitness
-7.481861e-
-1.051949e-
-3.705023e-
-2.807427e-

Orientation_Penalty
True

True

False

False

wWN RO

Scalability Test Results:

Particle_Count Image_Dimension Best_Fitness Average_Computation_Time

e 1000 1280 ©.599552 ©.0931833
1 1000 1920 ©.597548 0.0937673
2 5000 1280 0.598236 ©9.151908
3 5000 1920 0.599902 9.157069
4 1lo000 1280 ©6.599963 0.309346
5 10000 1920 0.599800 9.3086879

We performed pairwise t-tests against the standard PSO
and baseline CNN methods to determine the statistical
significance of the loU improvements produced by the
adaptive PSO approach. The results showed that the
suggested approach was more reliable and worked better,
with statistically significant differences (p < 0.01) favoring
the adaptive PSO method in both tests.

Ablation Study: Impact of Penalties on Fitness

le-9

0.0

Full Penalties No Aspect Penalty No Orientation Penalty No Penalties

To improve object localization and bounding box
refinement with orientation awareness, the suggested
technique uses adaptive particle swarm optimization (PSO).
A 5-dimensional vector encodes the center, size, and
orientation of each particle's bounding box. By assessing a
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fitness function that considers Intersection-over-Union (loU),
aspect ratio, and orientation penalties, the technique
optimizes bounding box alignment. Particles dynamically
modify their inertia weight to strike a balance between
exploration and exploitation, and they adaptively update their
positions and velocities during iterations based on personal
and global best solutions. Boundary restrictions keep
particles within the bounds of the viable solution space. The
algorithm iterates until it satisfies convergence requirements,
refining and improving bounding boxes in position, size, and
orientation. Objects that have been rotated or resized are
particularly well handled by this adaptive method.

I\VV. CONCLUSION

To refine bounding boxes and perform orientation-
aware localization, this paper presents an adaptive particle
swarm optimization (PSQO) algorithm. The method improves
optimization robustness by using adaptive mechanisms to
dynamically alter inertia weight and velocity and
successfully incorporating orientation information into the
particle representation. A new fitness function improves the
bounding box refinement by adding intersection-over-union
(loU), aspect ratio, and orientation penalties.

REFERENCES

Chen, C., Ding, H., & Duan, M. (2024). Discretization and decoupled
knowledge distillation for arbitrary oriented object detection. Digital
Signal Processing, 150, 104512.
https://doi.org/10.1016/j.dsp.2024.104512

Hu, Y., Niu, A., Sun, J., Zhu, Y., Yan, Q., Dong, W., Wozniak, M., &
Zhang, Y. (2024). Dynamic center point learning for multiple object
tracking under Severe occlusions. Knowledge-Based Systems, 300,
112130. https://doi.org/10.1016/j.knosys.2024.112130

K, K. a. S., & G, B. (2024). Faster region based convolution neural
network with context iterative refinement for object detection.
Measurement Sensors, 31, 101025.
https://doi.org/10.1016/j.measen.2024.101025

Li, H., Dong, Y., & Li, X. (2022). Object-aware bounding box
regression for online multi-object tracking. Neurocomputing, 518,
440-452. https://doi.org/10.1016/j.neucom.2022.11.004

Li, V., Siniosoglou, I., Karamitsou, T., Lytos, A., Moscholios, I. D.,
Goudos, S. K., Banerjee, J. S., Sarigiannidis, P., & Argyriou, V.
(2024). Enhancing 3D object detection in autonomous vehicles based
on synthetic virtual environment analysis. Image and Vision
Computing, 105385. https://doi.org/10.1016/j.imavis.2024.105385
Liu, W, Lin, Y., Li, Q. She, Y., Yu, Y., Pan, J., & Gu, J. (2024).
Prototype learning based generic multiple object tracking via point-to-
box  supervision.  Pattern  Recognition, 154,  110588.
https://doi.org/10.1016/j.patcog.2024.110588

Lu, B, Sun, Y., Yang, Z., Song, R., Jiang, H., & Liu, Y. (2024).
HRNet: 3D object detection network for point cloud with hierarchical
refinement. Pattern Recognition, 149, 110254.
https://doi.org/10.1016/j.patcog.2024.110254

Singh, K., & Parihar, A. S. (2024). MRN-LOD: Multi-exposure
Refinement Network for low-light object detection. Journal of Visual
Communication and Image Representation, 99, 104079.
https://doi.org/10.1016/j.jvcir.2024.104079

Tang, Q., Yang, M., Wang, Z., Dong, W., & Liu, Y. (2024).
Boundary points guided 3D object detection for point clouds. Applied
Soft Computing, 165, 112117.
https://doi.org/10.1016/j.as0c.2024.112117

Vinoth, K., & P, S. (2024). Lightweight object detection in low light:
Pixel-wise depth refinement and TensorRT optimization. Results in
Engineering, 23, 102510.
https://doi.org/10.1016/j.rineng.2024.102510

Xiao, J., Yao, Y., Zhou, J., Guo, H., Yu, Q., & Wang, Y. (2023).
FDLR-Net: A feature decoupling and localization refinement network
for object detection in remote sensing images. Expert Systems With

(1]

(2]

(3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]



TTIC, Vol.8, 2024

Applications, 225, 120068. of Artificial Intelligence, 138, 109406.
https://doi.org/10.1016/j.eswa.2023.120068 https://doi.org/10.1016/j.engappai.2024.109406

[12] Zhang, X., Lu, T., Wang, J., Fu, S., & Gao, F. (2024). Small object
detection by Edge-aware Neural Network. Engineering Applications

36



