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Abstract—This paper presents a comparative study between
neural network-based approaches and traditional numerical
methods for solving differential equations and eigenvalue prob-
lems. We first applied a neural network to solve the one-
dimensional diffusion equation and compared the results with
those obtained using the forward Euler iteration scheme. While
the neural network provided flexibility in grid selection and was
not constrained by stability criteria, it was less accurate and
slower than the iterative method. Subsequently, we employed a
neural network to determine the largest and smallest eigenvalues
of a symmetric, real matrix. Though the neural network success-
fully converged to the correct eigenvalues and eigenvectors, it
exhibited challenges in convergence time and accuracy, particu-
larly when compared to standard library routines. The findings
demonstrate that while neural networks can replicate the results
of traditional methods, they fall short in terms of computational
efficiency and precision. Therefore, their use in these applications
is limited by the trade-off between flexibility and performance.

I. INTRODUCTION

Classification problems are pivotal in machine learning,
serving as the foundation for numerous applications across
diverse fields. These applications range from medical diag-
nostics, where models analyze clinical data to predict diseases
such as cancer [1], to materials science, where machine
learning enhances density functional theory predictions to
determine energy-efficient atomic structures [2]. Similarly,
handwriting recognition leverages classification methods for
tasks like converting handwritten text into digital formats
[3]. In recent years, neural networks have emerged as a
flexible and powerful tool for tackling classification problems,
outperforming traditional techniques in many scenarios [4].

In this work, we explore the application of classification
techniques to a dataset on breast cancer, aiming to distin-
guish between malignant and benign cases. This analysis em-
ploys two common classification methods: logistic regression
and neural networks. Logistic regression, a robust statistical
method, models the probability of an outcome based on
input features [5]. Neural networks, on the other hand, offer
adaptability and scalability, excelling in complex and nonlinear
data scenarios [6].

The foundation of both logistic regression and neural net-
works lies in optimization, specifically the minimization of
a loss function. Optimization techniques, particularly gradi-
ent descent, have been widely studied for their convergence
properties and computational efficiency [7]. To validate our

methods, we initially tested our neural network implemen-
tation on linear regression using the Franke function, which
is frequently employed for benchmarking numerical methods
[8]. Subsequently, we applied both logistic regression and
neural networks to the breast cancer dataset, comparing their
performance in terms of accuracy and computational efficiency
[9]. This study also contextualizes the broader implications
of using neural networks in numerical problems, such as
solving differential equations and eigenvalue problems. Re-
cent research highlights both the promise and limitations of
neural networks in these areas, particularly when compared
to traditional numerical methods like forward Euler schemes
for differential equations and library routines for eigenvalue
problems [10]. These comparisons underscore the trade-offs
between flexibility and performance, a critical consideration
in selecting computational tools for scientific and engineering
applications.

II. THEORY AND METHODS

A. Logistic Regression

Logistic regression models the probability that a set of data
features, or input variables, x(i) = {1, x1, ..., xp} leads to
a certain response, yi. We organise these observations in a
dataset G = {x(i), yi}ni=1. In logistic regression, the response
is called a class, and the index k indicates which class the
outcome belongs to, where k can take on the values k =
1, 2, ...,K, with K being the total number of classes. The
simplest case is K = 2, with yi ∈ [0, 1], and the probability
given by the sigmoid function (also called the logistic function)

σ(t) =
1

1 + e−t
. (1)

The probability that the outcome yi belongs to class 1 is
therefore given by the logistic model,

P (yi = 1|x, β) = 1

1 + e−β·x . (2)

Similarly, the probability of yk belonging to the class 0 is
given by

P (yi = 0|x, β) = 1− P (yi = 1|x, β). (3)

We have used the standard probability notation; P (y|x) is the
probability of observing y given x. The regression coefficients
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of our model are given by the vector β = (β0, β1, ..., βp). Our
model is, therefore, similar to the standard linear regression
models,

β · x = β0 +

p∑
i=1

βixi. (4)

In order to train the model, we need to define a cost function.
The best candidate for logistic regression is minimizing the
cross entropy. To arrive at it, we use the principle of maximum
likelihood. We follow the derivation in [11, page 120] through-
out this section. The likelihood, L, of all possible outcomes
in G can be approximated by the product of the probability
of all outcomes. In other words,

L(β) =

n∏
i=1

P yi

i (1− Pi)
1−yi , (5)

where we have used the notation

Pi = P (yi = 1|x, β). (6)

The optimal regression coefficients β are, therefore, the ones
that maximise the likelihood, L. In this case,e it is mathemat-
ically easier to work with the logarithm of the likelihood,

l(β) = log[L(β)], (7)

because the logarithm converts the products into summations.
The fact that the logarithm is a strictly monotonic function
assures that L(β) and l(β) have the same solutions for the
maximization problem. We can therefore, define our cost
function as the negative logarithm of the likelihood,

C(β) = −l(β)

= −
n∑

i=1

(yi log(Pi) + (1− yi) log(1− Pi)).
(8)

This is known as the cross entropy.
We can also study the cost function with an additional

regularisation parameter λ, similar to ridge regression. This
is done by adding an L2-term to the cross entropy, giving

Cλ(β) = −l(β) + λ∥β∥2, (9)

Minimizing C(β) is equivalent to computing the gradient and
equating it to zero. Taking the gradient with respect to β and
writing out the result in matrix form, we obtain,

∇βC(β) = −XT (Y − P ) (10)

Here, X is the design matrix, with the vector x(i) on row
i, y = (y1, ..., yn), and P = (P1, ..., Pn). The minimization
equation, ∇βC(β) = 0, has no analytical solutions, and we
will therefore apply gradient descent methods in order to find
the optimal β parameters.

B. Gradient Descent

Gradient descent methods are widely used in machine
learning problems to find the minimum of the cost function.
The minimization equations rarely have analytical solutions,
and numerical methods falling under the ”gradient descent”-
umbrella are often used to compute the minima. We will
present some of them here.

We will consider a general dataset X , with some model
function f(z) depending on the variables z. As with the
case for logistic regression, we have defined a cost function
C(X, f). We will fit our model by finding the parameters z
that minimize C.

The standard form of gradient descent is called steepest
descent. The derivation follows the lecture notes 1. If we
want to minimize the function F (x) that evaluates the vector
x = (x1, ..., xn), the function F decreases the fastest in the
direction of the negative gradient. Thus, if we want to find the
x that minimises the F iteratively, we employ the algorithm

xi+1 = xi − γi∇F (xi). (11)

Here, γi > 0 is called the learning rate. For γi small
enough we are guaranteed that F (xi+1) ≤ F (xi). This naive,
first version of gradient descent is simple to implement but
comes with significant disadvantages. Most prominently, the
minimum found by gradient descent is not guaranteed to be
a global minimum; the algorithm is heavily dependent on
the learning rate, and a gradient is computationally expensive
to compute. Therefore, several improvements to the gradient
descent algorithm have been developed that aim to tackle
these issues. We will go through some of them here, including
the stochastic gradient descent (SGD) method that introduces
randomness, momentum-accelerated methods, and methods
that tune the learning rate.

1) Stochastic Gradient Descent (SGD): The crucial obser-
vation of the SGD method is that, in many cases, including
Eq. (8), the cost function C(β) can be written as a sum over
n independent data points,

C(β) =

n∑
i=1

ci(xi, β) (12)

The implication is, therefore, that the gradient also can be
written as a sum of n independent gradients.

∇βC(β) =

n∑
i=1

∇βci(xi, β) (13)

The randomness in the stochastic gradient descent method
is now introduced by dividing the n independent data points
into subsets called mini-batches. With n datapoints and M
points in each minibatch, there are n/M total minibatches.
We denote the minibatch Bk, with k ∈ [1, n/M ]. The total
gradient is now approximated by only computing the gradient
of one randomly chosen minibatch in each iteration step.
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n∑
i=1

∇βci(xi, β) ≈
n∑

i∈Bk

∇βci(xi, β) (14)

The minimization step in SGD, therefore reads

βj+1 = βj − γj

n∑
i∈Bk

∇βci(xi, βj). (15)

The SGD method offers two major improvements to simple
GD. Firstly, only computing the gradient of the randomly
chosen minibatch in each step decreases computational cost,
and cost reduction scales with system size. Secondly, randomly
picking the minibatch in each step minimizes the chance of
getting stuck in a local minimum.

2) Momentum accelerated methods: One of the main draw-
backs of the SGD method is that it has difficulties navigating
in parameter space when the gradient is much steeper in one
direction. This can lead to oscillations that are hard to combat
using only SGD. The solution is to introduce a momentum
term, which stores the gradient computed in the previous
step. This accelerates the minimization in the direction that
is consistently decreasing, making rapid arbitrary oscillations
less important. The minimization step is updated to

βj+1 = βj − η

n∑
i∈Bk

∇βci(xi, βj−1)− γj

n∑
i∈Bk

∇βci(xi, βj),

(16)
Where η is the strength of the momentum term, usually with

a value close to unity, we use a value of η = 0.99.
3) Tuning the learning rate: Momentum accelerated meth-

ods improves the SGD, but they can still do better. In par-
ticular, a lot of information is lost when we throw away the
history of the computed gradients. We therefore introduce two
methods that keep track of the moments of the gradients we
compute; RMS prop and Adam. RMS prop keeps track of the
second moment of the gradients, while Adam keeps track of
both the second and the first moment.

For ease of notation, we denote the gradient at each iteration
t by

gt = ∇βC(βt). (17)

In RMS prop, the second moment of the gradient is given by

st = E[g2t ]. (18)

As we want to keep track of past gradients as well, we use a
running average of the second moments given by

st = αst−1 + (1− α)g2t . (19)

The coefficient α controls the averaging time of the second
moment. Typically, the value is about α = 0.9. The mini-
mization step is given by

βt+1 = βt −
γt√
st + ϵ

gt. (20)

The coefficient γt is as before the learning rate, and ϵ is a small
constant introduced to prevent divergences. Typical values are

of the order of ϵ ∼ 10−8. As is evident from the equation
above, RMS prop effectively tunes the learning rate by virtue
of the second moment. In directions where the norm of the
gradient is large, the learning rate is reduced, and this speeds
up convergence by allowing for the use of large learning rates
in flat directions.

ADAM is an evolution of RMS prop that includes both the
second and first moments. As above, we denote the gradient
by gt. The first moment is defined as

mt = E[gt]. (21)

Introducing the parameters α1 and α2 to control the running
averages of the first and second moments, respectively, we
compute them as

mt = α1mt−1 + (1− α1)gt, (22)

and
st = α2st−1 + (1− α2)g

2
t . (23)

At the first iteration, both m0 and s0 are set equal to zero.
This implies that the estimates are biased towards zero. This
is counteracted by using bias-corrected estimates in the min-
imization step. The bias-corrected first and second moments
are given by

m̂t =
mt

1− αt
1

, (24)

and
ŝt =

st
1− αt

2

. (25)

Finally, the minimization step in the Adam algorithm reads

βt+1 = βt − γt
m̂t√
ŝt + ϵ

, (26)

where again ϵ is a regularisation parameter and γt is the
learning rate.

C. Error Metrics

In order to compare our results between different methods
we will use two different error metrics; the mean squared
error (MSE) and the accuracy score. The mean squared error
between a prediction, ỹ, and the actual value, y, is given by

MSE(y, ỹ) =
1

n

n∑
i=1

(yi − ỹi)
2. (27)

We will apply MSE to the minimization problems when we
test the gradient descent methods and the neural network.
Meanwhile, the accuracy score will be applied when we test
the classification schemes. The score measures the percentage
of correctly classified labels. For instance, a score of 0.8
implies that 80% of the data was correctly labeled. The score
is therefore given by

accuracy =
1

n

n∑
i=1

δ(ỹi − yi), (28)

where the δ-function returns 1 if the prediction is correctly
labelled, and 0 otherwise.
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D. Neural Networks

Artificial neural networks (ANN) are a class of algorithms
where a collection of nodes, commonly referred to as neurons,
are connected by graphs. Neural networks are inspired by
how brains function. There are many different versions of
ANNs, and herein we will focus on (one of) the most common
implementations, namely multilayer perceptrons (MLP). The
algorithm will feed the input data to the first layer of neurons
before it is propagated through the layers by the graphs
connecting them. We employ the feedforward algorithm, im-
plying that information only flows one way through the neuron
network.

1) Propagation: The propagation of the information, p,
is controlled by a set of weights, w, which determines the
strength of the connection between the neurons. This is done
in three steps, which are:

• The input information p, which is either the initial
information or the output from the previous layer, is
scaled with the strength of the connection,

p −→
n∑
i

wipi. (29)

• The bias of the neuron is added to the weighted input:
n∑
i

wipi −→
n∑
i

wipi + b. (30)

• The computed argument is processed by the activation
function, f , of the neuron to compute the output,

p̃ = f

(
n∑
i

wipi + b

)
. (31)

• The output is the input of the next layer.
Summarised the algorithm can be written out in one equa-

tion,
p −→ f(wTp+ b) = p̃. (32)

2) Activation functions: There are multiple choices for
activation functions in the feed-forward neural network, and
the choice of activation function partly determines the network
behavior. For instance, in our application to regression and
classification problems, different activation functions will be
chosen for the output layer of the model. Activation functions
are needed to introduce non-linearity in the network, as
without them, the neural network would simply be a series
of linear transformations.

For regression problems, there are multiple possible options.
We will apply the sigmoid function, introduced in Eq. (1),
the rectified linear unit function (ReLU), and the leaky ReLU
functions. The last two are given by

ReLU(t) =

{
0 for t < 0

t for t ≥ 0
(33)

and

Leaky ReLU(t) =

{
0.01t for t < 0

t for t ≥ 0
, (34)

respectively. As the output of the last layer in a regression
model could be any real number, it does not make sense to
add an activation function to this layer.

For the classification problem, we will use the sigmoid
function. This choice is suitable for binary classification,
where the output is labeled to either 0 or 1. For the output
layer, we will simply round the output from the sigmoid to
either 0 or 1. For multiclass classification, the generalized
choice would be the softmax function.

3) Output and back propagation: After the completion of
the feed-forward process, the output of the neural network is
compared to the true values of the training data. The compar-
ison is computed using the MSE in regression problems and
the accuracy score in classification problems. Afterward, the
weights and biases are adjusted, and the process is repeated.
One run of the feed-forward algorithm is referred to as an
epoch, while the adjustment of weights and biases is referred
to as backpropagation.

Comparing the output with the real values of the training
data requires a cost function. The cost functions used for the
neural network are the same as the ones we have already
discussed. We will use the OLS and Ridge functions, studied
in Project 1, in regression problems and the cross entropy in
Eq. (8) for the classification problems. The objective of the
comparison is to minimize the cost function, C. We employ
gradient descent methods to do this, calculating the gradient
of the cost function and updating the weights and bias in
the direction of the steepest descent, essentially applying the
gradient descent methods already introduced. If we define the
argument of the activation function, f , as

t ≡ wTp+ b, (35)

then the gradient of the cost function of the output layer, L,
is given by

ϵL =
∂C

∂f

∂f

∂tL
. (36)

We can then backpropagate this error to the other layers l =
L− 1, L− 2, ..., 2 via

ϵl = ϵl+1w
T
l+1

∂f

∂tl
(37)

The new weights and biases are thereafter calculated as

wl = wl − γϵl
∂f

∂tl−1
, (38)

bl = bl − γϵl, (39)

where γ is the learning rate.
4) Initialisation of weights and bias: The feedforward

neural network is an iterative process, and its general nature
means that there is no guarantee for it to converge to a global
minimum or even converge at all within the limits of compu-
tational time. Picking suitable initial conditions is, therefore,
important for the performance of the model. Unfortunately,
how to choose good initial conditions has been a poorly
understood problem[12].
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One known important aspect is that every node should be
initialised differently. As the feedforward network is fully
connected, two equal nodes will simply stay equal through
training and the complexity of the model will be reduced. The
simplest way to avoid this is to initialize all nodes randomly,
as the chance of getting many equal nodes is negligible.

It has been pointed out that the variance of the input and
output from a layer should be approximately equal[13]. In the
case where the variance increases through the network, many
of the nodes will be saturated (with an activation function like
the sigmoid), meaning that the gradient is nearly vanishing. As
a result, the learning process slows down. In the other case,
when the variance dies out, many of the nodes become similar,
and the complexity of the model decreases.

In our analysis, we tested different random distributions to
see how the choice affected our network.

E. Data Preparation

Before we analyze our implementation of the neural net-
work, we want to gain an understanding of the various
parameters at play. This we do by analyzing various gradient
descent methods on the Franke function. The Franke function
is modeled on a 1000× 1000 grid of random points spanning
x, y ∈ [0, 1]. We use p = 5 degree polynomials in our model
and seek to find the best fit of the Franke function using gradi-
ent descent methods. We use the mean squared error (MSE) as
the metric to compare the different methods. We learned from
work on project 1 that ordinary least squares (OLS) regression
worked well on the Franke data, and we therefore compared
our analysis to the MSE obtained using OLS regression. We
employ scikit-learn’s own implementation2 to compute the
OLS result. All data was scaled using scikit-learn’s standard
scaler 3 before regression and classification. We split our data
into a train/test ratio of 80/20.

III. RESULTS AND DISCUSSION

A. Gradient Descent Methods

Figures 1 and 2 show results for the SGD and SGDM
methods for two different minibatch sizes (64 and 128, re-
spectively). Both methods use the learning rates presented in
the legend in the left panel of the figures.

Immediately, several interesting effects are observed. Firstly,
for all instances, the general observation is that the MSE
approaches the OLS result while the learning rate approaches
unity. In other words, increasing the learning rate results
in faster convergence. Secondly, the inclusion of momentum
gives a better MSE at lower learning rates but does not improve
the MSE at the high learning rates that give a good MSE
without momentum. However, the inclusion of momentum also
implies a faster convergence for all learning rates. Thirdly, as
the learning rate increases, we observe rapid oscillations in the
MSE. Finally, of the two minibatch sizes tested, the smaller
minibatch size gives the smallest MSE, but the advantage is
minor.

2Scikit-learn linear regression.
3Standard Scaler
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Fig. 1. Comparison of the MSE as a function of the number of epochs
for the SGD and SGDM methods, using momentum η = 0.6 for the latter.
The various learning rates are indicated in the legend in the left panel and
compared with the OLS result obtained using library methods shown as a
horizontal black line. The minibatch size is indicated in the chart title. Note
that the y-axis is on a logarithmic scale in the left panel.
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Fig. 2. Comparison of the MSE as a function of the number of epochs
for the SGD and SGDM methods, using momentum η = 0.6 for the latter.
The various learning rates are indicated in the legend in the left panel and
compared with the OLS result obtained using library methods shown as a
horizontal black line. The minibatch size is indicated in the chart title. Note
that the y-axis is on a logarithmic scale in the left panel.

Figure 3 shows SGD on the Franke function where we
have included an L2 cost term in the cost function. The two
panels in the Figure show the two learning rates that gave the
smallest MSE in the previous example. We once again obtain
the smallest MSE for the largest learning rate, but it does
not outperform the MSE we found using the simple OLS cost
function in the previous figures. We also observe an interesting
effect in the parameter λ where the MSE initially decreases
as λ increases but starts increasing again when λ becomes too
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large. This is true for both learning rates.
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Fig. 3. The two learning rates that performed best for SGD investigated using
an L2 penalty parameter λ, as indicated in the legend in the left panel. The
results are compared with the OLS result obtained using library methods.

Figure 4 investigates the adaptive gradient (adagrad) method
with and without momentum. Again, we observe that adding
momentum yields a faster convergence, and here, we observe
that it also yields a slightly lower MSE for the larger learning
rates.

Finally, Figure 5 compares two methods for tuning the
learning rates, RMSprop and ADAM. These methods give the
smallest MSE we observe, but they also feature the most rapid
oscillations with the largest amplitudes.

In all the methods we have investigated, we find that when
the gradient descent method has converged, it starts oscillating

0 1000 2000
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M
SE
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= 10 6

= 10 5

= 10 4

= 10 3

= 10 2

sklearn OLS

0 1000 2000
Number of epochs
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Minibatch size = 128

Fig. 4. The adaptive gradient, or adagrad, method tested for various learning
rates as indicated in the left panel legend and compared to the OLS result.
The left panel shows the adagrad method tested without momentum, while
the right panel shows the result using momentum η = 0.6.
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Fig. 5. Comparison of the two SGD methods that tune the learning rate:
RMSprop (left) and ADAM (right). The learning rates for both panels are
indicated in the legend on the left side. The methods are compared to the
OLS regression result. Note that the y-axis has a log scale in the left panel.

rapidly, about a minimum. Intuitively, the reasoning for the
SGD and SGDM methods with a fixed learning rate is simple.
Once the method locates a minimum and converges to it, it is
unable to get closer to said minimum due to the finite size of
the learning rate. This is often explained with the metaphor
of a ball with fixed energy in a frictionless well; it is unable
to settle at the bottom of the well due to its finite energy
(corresponding to the learning rate), and the energy is not
lost to friction. The ball will, therefore, oscillate around the
bottom of the well indefinitely. This issue could, however,
be addressed by tuning the learning rate, making it decrease
as we approach the minimum. However, the same oscillatory
behavior is also observed with the two methods that tune the
learning rate, namely RMSprop, and ADAM. Curiously, for
ADAM, we obtain a good, non-oscillating MSE when we start
out with lower learning rates. The oscillations increase with
increasing learning rates, signaling that we either are unable
to combat the curvature by tuning the learning rate or that
learning rates are not decreased on a fast enough time scale.

Another curious behavior we observe is shown in Figure 3,
where too large penalty parameters λ are seen to increase the
MSE. This can be understood from Eq. (9), where we add a
constant term to the cost function, which is the product of the
squared norm of the regression weights and the penalty param-
eter λ. This prevents the norm of the regression weightsfrom
becoming too large, but it will also act as a constant addition
to the weights when they otherwise are well converged. The
constant addition increases with the size of λ, explaining why,
in Figure 3, the converged MSE increases with the size of λ.

Summarising the analysis on gradient descent methods, we
obtain good results for all investigated methods. The more
complex methods, i.e. adagrad, RMSprop and ADAM all give
good, and when good parameters are chosen, slightly better
MSE than the standard SGD and SGDM methods. However,
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Fig. 6. Feedforward neural network tested for various learning rates. We see
that the fit converges faster for higher learning rates, up to order 1.

they are more computationally expensive, with minimal to no
gain. There are a couple of likely explanations for this. Firstly,
we are training our methods on a relatively small dataset, and
secondly, we are using a fairly limited number of epochs. For
larger datasets, and with epoch numbers orders of magnitude
larger than the ones we are using, it is likely that we would
observe better performance of the more complex models.

B. Neural Network

The neural network was analyzed using a simple SGD, with
constant learning late. Figure 6 shows the development of
the loss during training on the Franke function for different
learning rates. As was the case for the linear model above, we
see that for small learning rates, the convergence goes very
slowly. The optimal value lies in the interval 0.5− 0.8. When
we increase the learning rate beyond 1, the network becomes
unstable.

Similar to previously, we got no improvement from includ-
ing a regularisation parameter, λ, for the fit to the Franke
function.

For the initial weights, we found that a normal distribution
with a standard deviation of around 2, gave the best fit to the
data. For a distribution with standard deviation less than 0.1,
we found that the training never got going. For higher standard
deviation the network became unstable.

Having fixed the parameters discussed above we adjusted
the number of nodes per layer and number of layers. Starting
with a single layer, the performance improved from going from
1 to around 20 layers. Further, it stabilized until we reached
about 90 layers when the model started overfitting.

Having tested the network on the Franke function, we
adopted it to classify the breast cancer data set. The only
changes we made were changing the cost function to the cross
entropy and adding the sigmoid function to the output layer. In
Figure 7, we present the accuracy scores for a set of learning
rates and regularisation parameters. Again, we see that the
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Fig. 7. Accuracy matrix for the feedforward neural classifier, tested on the
breast cancer dataset. The network consists of a single layer with 50 nodes.
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Fig. 8. Accuracy matrix for logistic regression on the breast cancer dataset
for various values of the learning rate, γ, and the regularisation parameter, λ,
without momentum in the gradient descent method.

performance does not depend heavily on the regularisation
parameter. We see that the network performs very well, with
a score of around 0.97 at a learning rate of 0.1.

C. Classification and Logistic Regression

Accuracy score matrices for the classification of breast
cancer data using logistic regression are presented in Figures 8
and 9, the latter with a momentum term in the gradient descent
minimization. In both cases, we obtained good accuracy in a
large portion of the explored parameter space, but the momen-
tum term yielded better accuracy in the ”worst” squares. This
is in line with our observations from the initial comparison of
the SGD/SGDM methods.
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Fig. 9. Accuracy matrix for logistic regression on the breast cancer dataset
for various values of the learning rate, γ, and the regularisation parameter, λ,
with momentum η = 0.6 in the gradient descent method.

In both cases, we also observe the same effect for the regu-
larisation parameter λ as we did when exploring it using SGD
methods earlier. This holds true for large learning rates. We
also ran Scikit-learn’s implementation of logistic regression
on the same dataset, obtaining an accuracy score of 0.99.
Our implementation, therefore, performs well compared to the
benchmark, albeit not perfect.

IV. CONCLUSION

In this project, we have compared gradient descent methods
with neural networks applied to regression problems and
neural networks with logistic regression on classification prob-
lems. For the regression problems we have extended the work
of project 1 where OLS, Ridge and Lasso regression were
applied to the Franke function. We find good convergence of
all gradient descent methods applied but find no real advantage
of using computationally expensive adaptive methods on the
”simple” problem we are dealing with in this project. As
the standard SGD and SGDM methods achieve just as good
MSE as the more advanced methods, these are the preferred
choices when handling simple regression problems. Neverthe-
less, more advanced methods are likely to outperform them
for more complex and large data sets. The neural network
also performs well for regression problems, achieving an MSE
comparable to the standard deviation of the noise.

For the classification problem we have studied a breast
cancer data set. The logistic regression method achieves an
accuracy of 0.96 for a large portion of the parameter space,
which is not too far from the benchmark accuracy of 0.99
obtained by the library method. The neural network is more
dependent on the learning rate, but is able to score even better
than logistic regression given the right learning rate.
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