
Beyond RDBMS
Amitabha Bhattacharyya (Author) Asst

Professor, Computer Applications Techno India

University

Salt Lake, INDIA

amitabhabhattac@gmail.com

Techno India University
Salt Lake, INDIA

Abstract—The advantages of RDBMS model and design methodology

are being utilized by industry/institutions for any software design and

implementation. The future of RDBMS certainly will be the Graph

Databases with NoSql methodologies, which is emerging as beyond of

relational model. In this paper we will highlight all the databases evolved

after RDBMS and couldn't stay in market for so long period and survey

has been made to highlight those databases after RDBMS. Relational

Database Management System has certain advantages like (i) Storing in

Tables, Column and Rows (ii) Data Storing in Normal Form (iii) Easy to

use via SQL to retrieve information via complex join operators (iv)

Maintainability via Reverse Engineering (v) Indexing and quick searches.

Due to this inherent features of RDBMS and SQL, it is necessary to re-

engineer and compare RDBMS where there will be no NoSQL methods or

paradigm shift towards semantic databases where we can avoid complex

join operations. Recently, numerous software industries and research

institutions are trying their old RDBMS system to be re-engineered into

some other architecture via nodes, edges and relationships where different

type of information can be stored easily. So, it is a big challenge for any

industry and institutions how quickly they can re-engineer their old

RDBMS into Graph Databases which is also called now-a-days the future

of databases. In this project, it is highlighted that the importance of the re-

engineering work lies in three different direction such as (i) Comparison of

RDBMS with GDBMS where facebook, twitter, Amazon, Google are

adopting (ii)Survey work of Graph Databases and (iii) Graph Database

Models is increasingly a topic of interest. The representation of data in the

form of a graph lends itself well to structured data with a dynamic schema.

This article goes over current applications and implementations of graph

databases, giving an overview of the different types available and their

applications and beyond RDBMS. Due to wide spread of graph algorithms

and models, no standard system or query languages has been defined for

graph databases. Research and industry adoption will determine the future

direction of graph databases. (iv) Beyond RDBMS artifacts established by

industry and academics.

Keywords— (RDBMS; GDBMS AND NoSQL; SQL,Graph)

I. INTRODUCTION (GDBMS)

In the past few years there has been a re-emergence of
interest in storing and managing graph data. So before begin
with Graph Databases, we want to show how various database
techniques has evolved after RDBMS in pictorial form. In
academia and research, we see many new attempts at providing
a database model for large graph data, particularly social graphs
and the Webgraph. While, more and more commercial
applications are looking towards graph databases for their
dynamic schema and ease of use in storing more complex data.
This paper will go through many of the current database models
giving a comparison of the different design implementations
and trade off. Historically the birth of graph theory is attributed
to the Swiss mathematician Leonhard

Euler, who first solved the Seven Bridges of Konigsberg
problem in 1736. This problem introduced the concept of
representing data in the form of a graph (a set of vertices or
nodes with edges joining them) and determining the traversal of
the graph that results in every edge being crossed only once.
Some components, such as multi-leveled equations, graphics,
and tables are not prescribed, although the various table text
styles are provided. Graph theory translates to today's work in
computational biology and social graphs with shortest path
queries, clustering, community detection, and other graph
algorithms. The optimization of these queries separates graph
databases from the rest. The research of graph databases was
popular in the early 1990s with database models like LDM,
GOOD, O2, and GraphDB. However, this interest fused off
with the insurgence of XML and the Internet. Not until recently
have graph databases again become a topic of interest. This re-
emergence is due in part to the large amounts of graph data
introduced by the Web. Just this year, the first graph conference
- Graph Connect 2012 [1, 2] - was held directing only on graph
databases and the adoption of such models. The recent research,
following the NoSQL movement, has moved away from
relational databases to ones better suited for a given application.
While much this movement is focused around the horizontal
scalability of data with column- store and key-value-stores, the
graph data model provides a greater level of data complexity in
comparison. Figure 1 shows a pictorial view of beyond RDBMS
development, fig 2 and fig 1 shows the categorization of
NoSQL data models comparing data complexity versus data
size. Graph data models provide a higher level of data
complexity in return for being able to handle less data. The
remainder of this paper is structured as follows, section 2 will
go over related work and past surveys of of graph database
models, section 3 will cover applications and types of graph
data and section 4 goes through a number of graph database
models, grouped by type. Last section 5 gives some
comparisons of uses of graph versus relational databases.

Figure 1.

TTIC, 2018, Vol.2, 10-20

10

mailto:amitabhabhattac@gmail.com
mailto:amitabhabhattac@gmail.com

Figure 2.

Figure 3.

Figure 4.

Figure 5.

TTIC, 2018, Vol.2, 10-20

11

A. Related Work

II. EASE OF USE database model, these operations would take a great deal longer,

due to the recursive nature of traversing a graph. 'Cytospace' is

the application used for this type of data via

Past comparisons and research of graph databases do a

great job of analyzing the advantages and disadvantages.

In particular Renzo Angles [#Renzo] presents a well

rounded survey of graph data models and their features.

The paper has gives multiple comparisons of graph data

models with respect to data storing, data structure, query

languages, and integrity constraints. For a survey of earlier

work (pre-NOSQL) in graph databases Angles and

Gutierrez [#Renzo1, #Renzo] present a survey of graph

database models prior to 2002, particularly geographical,

spatial and semi structured database models. It is important

to notice the shift of ideas between the two papers, with

respect to data schema. Older data models focused heavily

on semistructured and XML data in a traditional database.

Current-day data models, in contrast, focus more on

providing an object-oriented or oriented, structure where

the individual nodes or relations are first class priority.

There is also a trend of abstraction by database models

only providing API's for operation and manipulation. As

many of the graph databases remain unchanged from these

surveys, this paper will instead highlight more on the

application of each database model and categorize them

into different types.

B. Graph Applications

Some argue that most data is inherently a graph, and that

all data can be stored as a graph. Using graphs to store data not

only allows for a dynamic schema, but also provides

representations of data not previously possible. The ability

overlay different graphs (Ex. social, temporal, and spacial) on

data extends the functionality of querying data. In Managing

and Mining Graph Data[#springer, #Kate] we are introduced to

a variety of applications for graph data, focusing on three major

groups:

chemical and biological data, social networks, and the Web.

This paper will focus on these three, with the addition of

enterprise data via MongoDB examples and we may see the

emergence of big data tool like Cytospace software for

biological database, R-Programming for statistical tool for

pattern searching for social data with minimum effort or any

databases or Excel sheet data or from standard free datasets

available, Scala, Weka tools.

C. Chemical and Biological

Chemical data is modeled as a graph by assigning atoms

as nodes and bonds the edges between them. Biological data is

represented the same way, only with amino acids as the nodes

and links between them as the edges. This graph data is

important for such operations as drug discovery and analysis.

The data has many repeating node labels, so graph operations

are focused at pattern recognition. Pattern recognition is done

by finding frequent sub graphs of a given graph. Other

operations include rank-retrieval and hopping which are used to

determine chemical similarity. Modeled with a traditional

GDBMS.

D. Social Networks

Social Networks is a very popular topic not just in society,

but in graph research. Social networks, not only introduce a

profound amount of data, but present large Graph data problems

for the research community. These graphs, not only store nodes

of people but also link nodes of multimedia, relationships, and

messaging. For large social graphs we are most interested

shortest path queries and clustering. These graph algorithms

provide analysis of relations of two nodes and determination of

communities or social networks. Currently social networking

sites like Facebook do not use a graph databases. Instead they

use key-value stores or column stores Cassandra (a column

store similar to BigTable [#Mrigank,#Norbert, #Marek]). This

is due to the sheer amount of throughput that must be handled.

However, smaller scale systems or systems focused online

querying like Pregel[25] provide optimized or distributed

methods of analysis that support this type of data.

E. The Web

The Web, in its entirety, is essentially a graph of data and

information linked together. Cudre-Mauroux[#Cudre] done the

Web in terms of the Linked Data movement which supports the

rapid dissemination of large-scale structured data through three

principles: i) Unique Resource Identifiers (URIs) establish the

creation of distinct data anywhere on the web. ii) Structured

data, usually in the form of Resource Description Framework

(RDF) triplets, provides a standard structure for data to be

linked by. iii) Links to similar online resources connect the data

to form communities or clusters of data. This massive graph of

data presents applications in web search and data collection.

PageRank, possibly on of the most well known secrets of

Google, is a graph algorithm that analyzes Web data (pages) to

determine a rank for pages by looking at how many pages are

linked to it. Other important graph algorithms include web-

document clustering and keyword search. Both of these

algorithms aid in the searching and narrowing of data sets.

Applications that deal with web data, if on a smaller scale can

efficiently provide online querying of this graph-like data. For

applications that focus on larger-scale graph data, online

querying provides analytics and aggregates of graph data.

F. Enterprise Data

Graph databases are not limited to academia or large data

graphs. Enterprise data provides perhaps the largest uptake of

applications for graph database models. Modeling of data as a

graph is not limited to scientific or web data; rather we can

model most anything as a graph. The advantage of using graphs

is the ability to represent more complex data

TTIC, 2018, Vol.2, 10-20

12

models and support a dynamic schema. In particular, graph

databases have been successful for companies that store

hierarchies of product and financial and industry

data[#gconnect]. The accordance of modeling data with

relationships, allows for efficient restructuring as well as

multiperspective querying. Graph algorithms are utilized the

most, with applications such as these where data analytics are a

large part of business. Data analysis or data science tools

available now via R-Programming for vector add, sum,

operations, pattern from excel file or database or gdbms and

plot via PDF with any statistical tools and even it may fetch data

from gdbms for statistical plots. Another possible application

worth mentioning is the use of graph databases for bug

localization [#vertexdb]. Overall there is a wide range of areas

where graph data models are applicable.

G. Graph database models

There is a wide range of graph database models that have

been introduced throughout the past few years. From

implementations on top existing non-relational database models

to graph database models build from the ground up, there is no

standard graph database model on which graph algorithms are

developed [#binshao, #Shefali]. Rather, each graph database is

optimized for a specific set of task or queries. The problem

resides in the multiple divisions of graph databases. Graph

databases can focus on graph algorithms like shortest path

queries and sub graph matching which require the whole graph

to reside in memory and make distributed systems very

difficult. On the other side of the spectrum, a graph database

can focus on handling large graphs by scaling horizontally. This

however makes many graph algorithms extremely inefficient or

even impossible. Graphs can also focus on either online

querying where low latency is required, or offline querying

where larger data is handled. Graph database models are also

divided by language, since no standard language has been

introduced for proper graph querying. Most graphs implement

their own API for operation and manipulation, in which only

certain languages are provided the API in addition to the HTTP

REST protocol. Some databases, more specifically known as

RDF databases, support SPARQL querying which queries triple

patterns against the large graph of triplets stored in the database.

The following sections organize the different graph database

models into categories corresponding to the data model type.

Graph Databases : The mainstream graph databases provide an

object model for nodes and relationships. These graph

databases focus on either RDF triplets, linked data, or

relationships for storage. These databases often use direct

memory links to adjacent nodes rather than requiring joins or

keys lookups. AllegroGraph(2005)[#allegrograph] is a high-

performance, software oriented database model that came as a

precursor to the current generation of graph databases. It is

implemented as an RDF databases, and serves as a reference

implementation for the SPARQL query language.

Implementations of geo-temporal reasoning and social network

analysis extend the functionality of the database as

well as a prolog extension. Allegrograph also partially enforces

ACID while remaining scalable. DEX(2007)[#dex, #Norbert] is

a very efficient, bitmaps-based graph database model written in

C++. The focus of DEX is performance in the management of

very large graphs, and even allows for the integration of various

data sources. In addition to the large data capacity, DEX has a

good integrity model for management of persistent and

temporary graphs. Operation or core functionality like link

analysis, social network analysis, pattern recognition and

keyword search is done through their Java API. These core

functionalities lend themselves well to applications like IMDb,

on which experiments were done[#Norbert].

Neo4j(2007)[#neo4j] is a disk-based transactional graph

database advertised as “The world leading graph database". It

works on a network oriented model with relations as first class

objects. The API is in Java, and supports Java object storage.

The system is very efficient in graph traversals, however

currently requires the full dataset on each node (work is being

done on transparent partitioning). Neo4j also has partial ACID

support and lends itself well to transactional

enterprise solutions.

HyperGraphDB(2010)[#hypergraphdb, #hypergraphdb1] is an

open-source database focused on supporting generalized

hypergraphs. Hypergraphs differ from normal graphs in their

ability for edges to point to other edges. This representation is

useful in the modeling of graph data for artificial intelligence,

bio-informatics, and other knowledge representations.

Hypergraph supports online querying with a Java API.

Sones(2010)[#Sones, #Shefali] [15] is an object-oriented

database written in C#. The graph database model provides its

own query language based on SQL and supports a higher level

of abstraction for graph queries. The model is based on

weighted graphs and also has support for hypergraphs. Sones

runs on a distributed file system to support scalability.

Distributed Graph Databases : Distributed Graph databases

focus on distributing large graphs across a framework.

Partitioning graph data is a non-trivial problem, optimal

division of graphs requires finding sub graphs of a graph. For

most data, the number of links or relationships is too large to

efficiently compute an optimal partition; therefore most

databases use random partitioning. Horton(2010)[8, 28] is a

transactional graph processing framework created by

Microsoft. Horton makes use of the Orleans cloud framework

in order to query large distributed graphs. Instead of adopting a

map/reduce architecture, Horton works with a distributed

graph, passing a state machine across nodes. This allows for

better ad-hoc querying in comparison to map/reduce systems.

InfiniteGraph(2010)[#Infinitegraph] is a distributed-oriented

system that supports large-scale graphs and efficient graph

analysis. Rather than in-memory graphs, this system supports

efficient traversal of graphs across distributed data stores. This

works by creating a federation of compute nodes operated

through their java API.

Key-Value Graph Databases : Key-value graph databases

simplify the object-related model of graph databases to allow

for greater horizontal scalability. These models build on, or on

top of, existing key-value stores allowing for greater

TTIC, 2018, Vol.2, 10-20

13

scalability and partitioning of graph nodes.

VertexDB(2009)[#vertexdb] is a key-value disk store that

makes use of TokyoCabinet. The graph database focuses on a

vertex graph with added support for automatic garbage

collection. CloudGraph(2010)[#cloudgraph] is an in-

development, fully transactional graph database written in C#.

It takes advantage of key/value pairs to store data both in-

memory and on-disk. CloudGraph has also created its own

graph query language (GQL). Redis Graph(2010)[#redis] is an

implementation of a graph database in python using redis. Redis

is a modern key-value store; the python implementation is

minimalistic, creating an API in only forty lines of code.

Trinity(2011)[#trinity, #bshao] is a RAM-based key value store

under development by Microsoft Research. It uses message

passing over a distributed system, achieving low latency queries

on large distributed graphs. The benefit of in- memory key

value storage can be seen with increased performance.

Document Graph Databases : Like key-value stores, document

based graph databases introduce a higher level of data

complexity for a given node. Orientdb(2009)[#orientdb] is a

high-performance document-graph database. They make use of

a novel distributed hash table algorithm in order to get greater

parallelism. Another example of a document-store in graph

databases is an implementation on CouchDB[#kalyani,

#NRPrasanth]. This implementation makes use of the document

store, in order to serve low latency queries for large graph

databases. Document stores, much like key- value stores

provide quick data retrieval for structured data.

SQL Graph Databases : Filament[#Filament] [#Kate] is a graph

persistence library built on top of PostgreSQL. It allows SQL

querying through JDBC with navigational queries for querying

the graph data. G-Store(2010)[#gstore] is a prototype query

language and storage manager for large graphs. It is also build

on top of PostgreSQL. These implementations of graph

databases are often referred to as Graph stores, for the

implementation only concerns storage and retrieval of a graph

data from the database, not how the data is stored.

Map/Reduce Graph Databases : To handle very large graphs,

one can implement Map/Reduce functionality, in order to

achieve the maximum amount of parallelism. Partitioning

nodes of a graph across many machines will result in only a

sizable amount of computation to be one on each machine.

Pregel(2009)[#pregel] is a vertex-based infrastructure for

graphs built on top of Hadoop. Hadoop, a Map/Reduce

framework provides batch jobs for processing the distributed

vertices with message passing. This approach only affords

doing offline queries of the graph data.

Phoebus(2010)[#phoebus] is another implementation of Pregel,

again building on top of Hadoop in order to benefit from the

Map/Reduce framework. Giraph(2011)[#giraph] also builds off

of Pregel with the addition of fault tolerance. If the application

coordinator has a fault, one of the available nodes will

automatically become the new coordinator.

Figure 6. Graph Database Survey and Evolution

H. Comparisons

Multiple studies have been done comparing the performance of

graph databases and relational ones. Graph databases like

Neo4j[#neo4j] optimize for adjacency queries and graph

traversal. While some operations may not be as fast as the

indexing provided in a SQL database, the overall performance

when doing graph-like queries will be such improved. Things

to look for in graph-like queries are, lots of many to 5 many

relationships, having tree like characteristics, or requiring

frequent schema changes. In one comparison Neo4j and

MySQL [#batra] , the authors found that graph databases did

perform better than the relational model on the objective

queries. However, they noted that Neo4j is not yet mature, and

because there is no standard query language available it only

added to this. Another paper looked at how graph databases like

Neo4j performed on spacial data[#blp]. The paper found that

relational databases still performed better, in all spatial queries

but the ones that involved hierarchical traversal. The fact that a

relational database can quickly index a coordinate location

gives an advantage to relational databases. In contrast test run

with a directed acyclical graph on Neo4j and MySQL[#Chad],

showed a clear advantage of graph databases for structural

queries. When comparisons focus on structured data with

graphs that are fairly dense, relational indexing performance

with joins can no longer keep up with the linked data

representation in graph databases.

I. Sample survey of creating table via GraphDB

A sample survey as was done to create a database via MongoDB

for developing Network database or Solar System each grid

electricity generation output measurement storage databases.

We choose MongoDB for special attraction how we can use

NoSQL in practical term.

TTIC, 2018, Vol.2, 10-20

14

Figure 7. A sample Excel File

Figure 8. MongoDB Usage.

Figure 9. Integrating workflow system via document db of

IBM Lotus Notes

In Excel file *.xls the information stored that we want to

automate via MongoDB with pictures, connection with another

distributed servers. Now to develop databases of *.xls file via

MongoDB, screenshot of Excel file is being shown in this

figure. MongoDB server should run in background, a

special type of file to created in *.txt format to insert to

MongoDB. Special File Creation for MongoDB.======{"Sl

no.":1, "Ip address":10.70.64.1, "Mac address":, "Dev.

type":"Foundry Sw", "Serial no.":, "Make":"DEC",

"Model":"DEC-PESWITCH", "Location information":"3H-

RJE-IGO" "Total no UTP ports":, "FO port type":, "MRS/IOS

version":, }, { "Sl no.":2, "Ip address":10.61.41.3, "Mac

address":, "Dev. type":"Foundry Sw", "Serial no.":,

"Make":"DEC", "Model":"DS-7009", "Location

information":"Go time office" "Total no UTP ports":, "FO port

type":, "MRS/IOS version":, }, { "Sl no.":3, "Ip

address":10.61.65.1, "Mac address":, "Dev. type":"Switch",

"Serial no.":76DV2W9468840, "Make":"3Com",

"Model":"3COM 4400 SWITCH", "Location

information":"3H-RJE-I" "Total no UTP ports":24, "FO port

type":, "MRS/IOS version": 3.21, }, { "Sl no.":4, "Ip

address":10.61.65.2 , "Mac address":00-d0-96-91-21-d8 ,

"Dev. type":"Switch", "Serial no.":7ZNV39121D8 ,

"Make":"3Com", "Model":"3COM 3300 SWITCH",

"Location information":"5H-COST 1st Fl.East" "Total no UTP

ports":24, "FO port type":, "MRS/IOS version": 2.69, },... etc.

For Practical for Neo4j , creating a table is much more differrent

than SQL. An Example. Example shown how to code of Neo4j

for database creation and queries. 1. CREATE (B001:BOOKS

{title:'THE PRINCIPALS OF COMPUTER SCIENCE',

 PRICE:220,COPIES:20}) CREATE

(A1:AUTHOR {name:'P.CHAKRABARTY'}) CREATE

(A1)-[:WROTE]->(B001) Response through Bolt Response

Data { "records": [], "summary": { "statement": { "text":

"CREATE (B001:BOOKS {title:'THE PRINCIPALS OF

COMPUTER SCIENCE',

PRICE:220,COPIES:20})\nCREATE (A1:AUTHOR

{name:'P.CHAKRABARTY'})\nCREATE (A1)-[:WROTE]-

>(B001)", "parameters": {} }, "statementType": "w",

"counters": { "_stats": { "nodesCreated": 2, "nodesDeleted": 0,

"relationshipsCreated": 1, "relationshipsDeleted": 0,

"propertiesSet": 4, "labelsAdded": 2, "labelsRemoved": 0,

"indexesAdded": 0, "indexesRemoved": 0,

"constraintsAdded": 0, "constraintsRemoved": 0 } },

"updateStatistics": { "_stats": { "nodesCreated": 2,

"nodesDeleted": 0, "relationshipsCreated": 1,

"relationshipsDeleted": 0, "propertiesSet": 4, "labelsAdded":

2, "labelsRemoved": 0, "indexesAdded": 0,

"indexesRemoved": 0, "constraintsAdded": 0,

"constraintsRemoved": 0 } }, "plan": false, "profile": false,

"notifications": [], "resultConsumedAfter": { "low": 1, "high":

0 }, "resultAvailableAfter": { "low": 351, "high": 0 } },

"timings": { "resultAvailableAfter": 351,

"resultConsumedAfter": 1, "type": "bolt", "totalTime": 352 }
}.

Practical Example of Document DB of IBM lotus Notes,

Integrating all TIU Colleges Workflow, Communicating via

Mailing and Approval System thereof. With Hub and Spoke

server architecture we can utilise databases with any format

picture, images, float, integer, char or any data without any

relational concepts. We need to install Domino Server for all

TIU college or any Organization and client will communicate

TTIC, 2018, Vol.2, 10-20

15

with selected database created with document db architecture.

How Moving Away from Relational Databases to Graph

Databases the following pictures are self explanatory.

Figure 10. Moving away from RDBMS

Figure 11. Moving away from Relational to GDBMS

J. Future Trends and Innovative Trends towards Beyond

RDBMS

Questions regarding Beyond RDBMS relates to access

storage and retrieval process via semantic methods trends. 1. Is

Semantic Database is the future? 2. Is Graph Database is the

“Future of Database” 3. What is the advantages of keeping

GDBMS like facebook and twitter. 4. What are the operators

instead of complex join operations in GDBMS, standard

methodologies is yet to be explored. 5. Is the call graph

databases are faster compared to Relational Database

Management system? Here is the trends towards Graph

Databases (figure no 2)

K. Why Paradigm shift from RDBMS to GDBMS?

Relational db-model [Codd 1970, 1983] was introduced

by Codd, and highlights the concept of abstraction levels by

introducing a separation between the physical and logical

levels. Gradually the focus shifted to modeling data as seen by

applications and users [Navathe 1992]. This was the strength of

the relational model, at a time when application domains

managed relatively simple data (financial, commercial and

administrative applications). The relational model was a

landmark development because it gave the data modeling

discipline a mathematical foundation. It is based on the simple

notion of relation, which together with its associated algebra

and logic, made the relational model a primary model for

database research. In particular, its standard query and

transformation language, SQL, became a paradigmatic

language for querying. The differences between graph db-

models and the relational db-model are manifold. For example,

the relational model is geared towards simple record- type data,

where the data structure is known in advance (airline

reservations, accounting, inventories, etc.). The schema is

fixed, which makes it difficult to extend these databases. It is

not easy to integrate different schemas, nor is it automatable.

The query language cannot explore the underlying graph of

relationships among the data, such as paths, neighborhoods,

patterns. Semantic db-models [Peckham and Maryanski 1988]

appeared as there was a need to incorporate a richer and more

expressive set of semantics into the database, from a user‟s

viewpoint. Database designers can represent objects and their

relations in a natural and clear manner (similar to the way users

view an application) by using high level abstraction concepts

such as aggregation, classification, and instantiation, super-

classing, attribute inheritance, and hierarchies [Navathe 1992].

In general, the extra semantics supports database design and

evolution [Hull and King 1987]. A well-known example is the

entity- relationship model [Chen 1976], which has become a

basis for the early stages of database design. Other examples of

semantic db-models are IFO [Abiteboul and Hull 1984] and

SDM [Hammer and McLeod 1978]. Semantic db-models are

relevant to graph db-model research because the semantic

dbmodels reason about the graph-like structure generated by the

relationships among the modeled entities. Object-oriented (O-

O) db-models [Kim 1990] appeared in the eighties, when the

database community realized that the relational model was

inadequate for data intensive domains (knowledge bases,

engineering applications). This research was motivated by the

appearance of nonconventional database applications,

involving complex data objects and complex object

interactions, such as CAD/CAM software, computer graphics,

and information retrieval. Sometimes it is necessary to relate

the two or more table in a database. To do so we use relational

database system (RDBMS). However this relational database is

not suitable for web applications, computer networks,

geographical structure etc., moreover in these highly connected

data applications requires complex join operation which can

make typical operation on this kind of data inefficient

application hard to scale. To overcome this problem

TTIC, 2018, Vol.2, 10-20

16

Figure 12. Semantic Evolution

Figure 13. Facebook, twitter and many institutions trends

towards GDBMS, Why? Graph Database with Nodes, Edges

and relationship, inherent quality of being faster without much

of thought of indexing, complex join and it‟s enough which

nodes connected to which nodes. Some Survey Pictures.

TTIC, 2018, Vol.2, 10-20

17

We use graph database management system (GDBMS). In

GDBMS data are natively stored as graph and queries are

expressed as graph traversal operation. This allows application

to scale very large graph based data sets. In addition GDBMS

do not rely on any schema they provide more flexible solution

in scenarios where the organization of data evolves rapidly. By

using graph database rather than using the relational database is

more beneficial. In graph database it follows a naive approach

where tuples are mapped to nodes and foreign key is mapped

into edges. In this paper the network db relational database is

converted into the graph database for high performance.

Specifically the relational database query is converted into the

graph database query. The general graph model and generic

query language for graph structures.

Relational Databases: The Relational Structure Relational

databases require a schema before data can be inserted. A

relational database organizes data according to relations or

tables, columns (attributes/properties), rows (tuples/objects).

Document Databases databases store structured documents.

Usually these documents are organized according a standard

(e.g. JavaScript Object Notation|JSON, XML, etc.) Document

databases tend to be schema-less. That is, they do not require

the database engineer to appropriately specify the structure of

the data to be held in the database. MongoDB is available at

http://mongodb.org and CouchDB is available at

http://couchdb.org Processing JSON Documents Most

document databases come with a Map/Reduce feature to allow

for the parallel processing of all documents in the database. Map

function: apply a function to every document in the database.

Reduce function: apply a function to the grouped results of the

map. M : D ! (K; V); where D is the space of documents, K is

the space of keys, and V is the space of values. R : (K; V n) !

(K; V); where V n is the space of all possible combination of

values. Data Management Workshop Graph databases store

objects (vertices) and their relationships to one another (edges).

Usually these relationships are typed/labeled and directed.

Graph databases tend to be optimized for graph-based traversal

algorithms. Neo4j is available at http://neo4j.org AllegroGraph

is available at http://www.franz.com/agraph/allegrograph

HyperGraphDB is available at http://www.kobrix.com/hgdb.jsp

Graph Databases: Handling Property Graphs Gremlin is a

graph- based programming language that can be used to interact

with graph databases. However, graph databases also come with

their own APIs. Gremlin G = (V,E) Gremlin is available at

http://gremlin.tinkerpop.com.

Future work depends on categorization of data with one extra

flag for big data with „weka‟ tools. It‟s the main purpose of this

paper and also a glimpse of survey of gdbms. Index lookup can

be grouped with B+Tree implementation with another flag

attached to each node where biological, social, enterprise data,

big data, corporate data, facebook/twitter data and others can be

distinguished and retrieving time will be less.

TTIC, 2018, Vol.2, 10-20

18

http://mongodb.org/
http://mongodb.org/
http://mongodb.org/
http://mongodb.org/
http://couchdb.org/
http://couchdb.org/
http://neo4j.org/
http://neo4j.org/
http://www.franz.com/agraph/allegrograph
http://www.franz.com/agraph/allegrograph
http://www.kobrix.com/hgdb.jsp
http://www.kobrix.com/hgdb.jsp
http://gremlin.tinkerpop.com/
http://gremlin.tinkerpop.com/

Figure 14. New Trends Inside looks.

Innovative idea for classification of grouped data in a simpler

way. Say 'LUCA' is being searched and found but there may be

more luca in another kind of data classification which is coming

in the near future and we have integrate with No-SQL, then A-

Z(1 extra flag required for categorized data ranging either from

1-99 or A-Z). We need to explore more how we can put an

extra flag for index lookup in Graph Database so that storage

and retrieval will be easier and quick if we put the whole set of

database via No-SQL paradigm. Recent trends in Graph

Databases can be found in Amazon Dynamo DB look,

Allegrogrpahs, MongoDB, IBM lotus Notes Db, Neo4J and

books on Semantic databases.

L. Conclusions

This paper gave an overall summary of the current state of graph

databases. Much of the current research in the field of

applications however, in turn, the various applications found

have been made with wide assortment of graph databases. In

order to possibly enumerate all the different categories of graph

databases, this paper depicted over many of the current graph

database models being used today. Graph database models are

divided by a number algorithms and paradigms which databases

wish to optimize. There still does not exist a standard query

language for graph databases, leading many implementations to

be API only. The future of graph databases resides in the

prevalence of one database over another, most likely

determined by the enterprise industry and their adoption.

Overall graph databases provide a much needed structure for

storing data and incorporating a dynamic schema, however the

research topic itself needs more structure before it can fully be

adopted by industry.

Acknowledgment

I take this opportunity to express my gratitude to Prof
SipraDas Bit, Prof. Durgapada Chakravarty, Prof. Prasun
Ghosal, Prof. Asit Baran Bhattacharya, Dr. Anil Bikas
Chaudhury and my Parents for their constant encouragement. I
also thank Techno University, Salt Lake for giving us
opportunity to write via IEEE, for having allowed me to pursue
this paper. I also thank my well wishers and my mother for
giving me good suggestions.

References

[1] Graph connect.

[2] Cloudgraph. http://www.cloudgraph.com/.

[3] R. Angles., A comparison of current graph database models., In
Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering Workshops, ICDEW '12, pages 171(177, Washington, DC,
USA, 2012.IEEE Computer Society).

[4] R. Angles, C. Gutierrez., Survey of graph database models. acm
comput.surv., 40(1):1:1(1:39, february 2008)., ACM Comput. Surv.,
40(1):1:1(1:39,February 2008).

[5] C. Aggarwal, H.Wang., C.C. Aggarwal and H.Wang. Managing and
mining graph data, volume 40. Springer, 2010, Springer, 2010.

[6] K. Byrnep, Populating the semantic web - combining text and relational
databases as rdf graphs kate byrne, Ph.D. thesis, Doctor of Philosophy

Institute for Communicating and Collaborative Systems School of
Informatics University of Edinburgh (2008).

[7] S. D. K. N. P. D. o. C. E. V. A. C. D. E. I. I. Mrigank Mridul,Akashdeep
Khajuria, Analysis of bidgata using apache hadoop and mapreduce
mrigank mridul, akashdeep khajuria, snehasish dutta, kumar n prasad.m.r
dept of cse,ewit,vtu asst.prof, cse dept, ewit india indoia, International
Journal of Advanced Research in Computer Science and Software
Engineering 4(5), May - 2014, pp. 555-560.

[8] S. G.-V. J. N. M.-A. S.-M. Norbert Martnez-Bazan, Victor Muntes-
Mulero,J.-L. Larriba-Pey., Dex: high-performance exploration on large
graphs for information retrieval., in: In Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management,
CIKM '07, pages 573-582, New York, NY, USA, 2007. ACM).,2007.

[9] L. H. Marek Ciglan, Alex Averbuch, Benchmarking traversal operations
over graph databases, Tech. rep., Institute of Informatics, Slovak 24
Academy of Sciences Bratislava, Slovakia Swedish Institute of Computer
 Science Stockholm,
https://github.com/tinkerpop/blueprints/wiki.

[10] P. Cudre-Mauroux, S. Elnikety., Graph data management systems for new
application domains., in: In International Conference on Very Large Data
Bases (VLDB), 2011., 2011.

[11] Vertexdb.

[12] H. W. Bin Shao, Y. Xiao., Managing and mining large graphs: systems
and implementations., in: In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD '12, pages
589(592,New York, NY, USA, 2012. ACM)., 2012.

[13] A. B. ShefaliPatil, Gaurav Vaswani, Graph databases- an overview, (IJC-
SIT) International Journal of Computer Science and Information
Technologies, Vol. 5 (1) , 2014, 657-660.

[14] Allegrograph.

[15] Dex.

[16] Neo4j.

[17] Hypergraphdb.

[18] Sones.

[19] Infinitegraph

[20] redis graph

[21] Trinity.

[22] H. W. B. Shao, Y. Li., The trinity graph engine. technical report., Tech.
rep., Technical Report 161291, Microsoft Research, 2012. (2012).

[23] Orientdb.

[24] K. N. M. C. S. W. kalsatone@gmail.com, Modern graph databases
models, International Journal of Engineering Research and Applications
(IJERA) ISSN: 2248-9622 International Conference on Industrial
Automation And Computing (ICIAC- 12th & 13th April 2014).

[25] I. P. D. o. C. S. S. o. E.-S. U. N.R.Prasanth, K.Arul Under graduate
Student, Converting employee relational database into graph database,
International Journal of Advanced Research in Computer Science &

TTIC, 2018, Vol.2, 10-20

19

http://www.cloudgraph.com/
http://www.cloudgraph.com/
https://github.com/tinkerpop/blueprints/wiki
https://github.com/tinkerpop/blueprints/wiki
https://github.com/tinkerpop/blueprints/wiki
https://github.com/tinkerpop/blueprints/wiki
mailto:kalsatone@gmail.com
mailto:kalsatone@gmail.com

Technology (IJARCST 2014) 514 Vol. 2, Issue 2, Ver. 3 (April - June
2014) ISSN : 2347 - 8446 (Online) ISSN : 2347 - 9817 (Print). 25

[26] Filament.

[27] G-store.

[28] A. J. B. J. C. D. I. H. N. L. Grzegorz Malewicz, Matthew H. Austern, G.
Czajkowski., Pregel: a system for large-scale graph processing., in: In
Proceedings of the 2010 AC SIGMOD Interna- tional Conference on
Management of data, SIGMOD '10, pages 135 -146, New York, NY,
USA, 2010. ACM), 2010.

[29] Phoebus.

[30] Giraph.

[31] S. Batra, C. T. C. analysis of relational, . graph databases. International
Journal of Soft Computing, Comparative analysis of relational and graph
databases., International Journal of Soft Computing, 2.

[32] Blp baas. nosql spatial (neo4j) versus postgis.

[33] Z. Z. X. N. Y. C. Chad Vicknair, Michael Macias, D. Wilkins., A
comparison of a graph database and a relational database: a data
provenance perspective., in: In Proceedings of the 48th Annual Southeast
Regional Conference, ACM SE '10, pages 42:1-42:6, New York, NY,
USA, 2010.ACM., 2010. 26

TTIC, 2018, Vol.2, 10-20

20

