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Abstract - Cloud robotics is an evolving field that allows 

robots to offload computation and storage intensive jobs into the 

cloud. Robots are limited in terms of computational memory and 

storage. Cloud provides unlimited computation  memory, 

storage and especially collaboration opportunity. Cloud-enabled 

robots are divided into two categories , standalone and 

networked robots. This paper surveys cloud robotic platforms, 

standalone and networked robotic works such as simultaneous 

localization and mapping (SLAM).[5] 

Index Terms - cloud-enabled robots, cloud robotics, cloud 

technologies, standalone and networked robots, Software as a 

Service, Platform as a Service, Infrastructure as a Service.. 

I.  INTRODUCTION 

Cloud robotics is a field of robotics that  invokes cloud 

technologies such as cloud computing, cloud storage, and 

other Internet technologies  on the benefits of converged 

infrastructure and shared services for robotics. When 

connected to cloud, robots can benefit from the powerful 

computation, and communication resources of modern data 

centre in the cloud, which can process and share in sequence 

from various robots or agent (other machines, smart objects, 

etc.). Humans can also hand over tasks to robots remotely 

through networks. Cloud computing technologies enable 

robot systems to be endowed with powerful capability whilst 

reducing costs through cloud technologies. Thus, it is possible 

to build lightweight, low cost, smarter robots have intelligent 

"brain" in the cloud. The "brain" consists of data centre, 

knowledge base, task planners, deep learning, information 

processing, environment models, communication support, 

etc.[1][2][3][4] 

CLOUD COMPUTING TECHNOLOGIES 

Cloud computing consist of three models as Software as a 

Service (SaaS), Platform as a Service (PaaS) and 

Infrastructure as a Service (IaaS) as shown in fig 1.SaaS 

applications are served over the internet, thus eliminating the 

need to install and run the application on the users system. 

Theyare managed from a central location and accessed 

remotely by a web browser or a mobile client. Google Apps is 

the most widely used SaaS application suit. PaaS refers to 

computing platform served by cloud infrastructure. PaaS 

offers developers to get hold of all the systems and 

environments required for the life cycle of software, be it 

testing, deploying and hosting of web applications. IaaS 

provides,the required infrastructure as a service. The client 

need not buy the required servers, data centre or the network 

resources. The spirit of IaaS model is a pay-as-you-go 

monetary model. Amazon and Microsoft are also IaaS 

providers.  

FIG.1: CLOUD COMPUTING INFRASTRUCTURE 

Robots make significant socio-economic impacts to human 

lives [10].  For example, robots can do repeatitive or 

dangerous tasks, such as painting, packaging, and welding. 

However, robots are limited in terms of computational 

capacity and storage. Also they have physical constraints such 

as size, shape, motion mode and working environment [11]. 

Robots are usually used for industrial purposes; they are not 

usually used in daily life due to their cost. Cloud computing 

can be used to enhance robot capabilities. Cloud computing 

technologies provide many advantages that can be valuable 

for working and running robot services. For example complex 

computations of computation intensive applications, can be 

offloaded in the cloud like Apple’s voice recognition service 

“Siri”. Connecting the robots to semantic knowledge 

databases hosted in cloud will allow a large number of varied 

robots to share common sense knowledge [12]. The concept 

of “robot-as-a-service”(RaaS) refers to robots that can be 

vigorously combined to give support to the execution of 

specific applications. RaaS has three aspects: structure, 

interface, and behaviour. There can be many kinds of robot 

intelligent devices. For example, robot cops [13], restaurant 

robot waiters [14], robot pets [15], and patient care robots 

[16]. These robots are spread in different locations and can be 

accessed through CR platforms.  

ROS (ROBOTICS OPERATING SYSTEM) 
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Writing software for robots is not easy, particularly as the 

scope of robotics continues to grow. Different types of robots 

can have varying hardware, making code reuse non trivial. 

On top of this, the size of the required code can be 

intimidating, as it must contain a stack starting from driver-

level software and continuing up through abstract reasoning, 

and beyond. Since the breadth of expertise is well beyond the 

capabilities of single researcher.Robotics software 

architectures must also support large-scale software 

combination efforts. To meet these challenges many robotics 

researchers,  have previously created a variety of frameworks 

to manage complexity and ease rapid prototyping of software 

for experiments, resulting in the many robotic software 

systems currently used in academia and industry [17]. Each of 

these frameworks was intended for a particular purpose, 

perhaps in response to perceived weakness of other available 

frameworks, or to place stress on aspects which were seen as 

most important in the design process. ROS, the framework is 

also the product of trade-offs and prioritizations made during 

its design cycle. We believe its importance on large-scale 

robotics research will be useful in a wide variety of situation, 

as robotic systems grow ever more complex. In this paper we 

discuss,the design goals of ROS, how our implementations 

work towards them, and demonstrate how ROS handles 

several common use cases of robotics software development. 

We do not claim that ROS is the best framework for all 

robotics software. In fact, we do not believe that such a 

framework exists.The field of robotics is too broad for a single 

solution. ROS was designed to meet a precise set of 

challenges encountered when developing large-scale 

FIG. 2. A TYPICAL ROS NETWORK CONFIGURATION 

service robots as part of the STAIR project [18] at Stanford 

University1 and the Personal Robots Program [19] at Willow 

Garage2 but the resulting architecture is more general than 

the service robot and mobile manipulation domains. The 

philosophical goals of ROS can be summarized as:  

• Peer-to-peer

• Tools-based

• Multi-lingual

• Thin

• Free and Open-Source To our knowledge,

A. Peer-to-Peer A system built using ROS consists a number 

of processes, potentially on different hosts, connected at 

runtime in a peer-to-peer topology. Although frameworks 

based on a central server can also realize the profit of the 

multi-process and multi-host design.Central data server is 

problematic if computers are connected in a heterogeneous 

network. 

B. Multi-lingual When writing code many individuals have 

preferences for some programming languages above others. 

These preferences are the result of personal trade-offs 

between programming time, ease of debugging, syntax, 

runtime efficiency, and a host of other reasons, both technical 

and cultural. For these reasons, we have designed ROS to be 

language-neutral. ROS currently supports four very different 

languages: C++, Python, Octave, and LISP, with other 

language ports in various states of completion. The ROS 

specification is at the messaging layer, not any deeper. Peer-

to-peer connection negotiation and configuration occurs in 

XML-RPC, for which reasonable implementations exist in 

most major languages. Rather than provide a C-based 

implementation with stub interfaces generated for all major 

languages, we prefer instead to implement ROS natively in 

each target language, to better follow the conventions of each 

language. However, in some cases it is expedient to add 

support for a new language by wrapping an existing library: 

the Octave client is implemented by wrapping the ROS C++ 

library. To support cross-language development, ROS uses a 

simple, language-neutral interface definition language (IDL) 

to describe the messages sent between modules. The IDL uses 

(very) short text files to describe fields of each message, and 

allows composition of messages, as illustrated by the 

complete IDL file for a point cloud message: 

Header header 

Point32[] pts 

ChannelFloat32[] chan 

C. Tools-based  

In an effort to manage the complexity of ROS, we have opted 

for a microkernel design, where a large number of small tools 

are used to build and run the various ROS components, rather 

than constructing a monolithic development and runtime 

environment. These tools perform various tasks, e.g., navigate 

the source code tree, get and set configuration parameters, 

visualize the peer-to-peer connection topology, measure 

bandwidth utilization, graphically plot message data, auto-

generate documentation, and so on. Although we could have 

implemented core services such as a global clock and a logger 

inside the master module, we have attempted to push 

everything into separate modules. We believe the loss in 

efficiency is more than offset by the gains in stability and 

complexity management. 

D. Thin 

As eloquently described in , most existing robotics software 

projects contain drivers or algorithms which could be reusable 

outside of the project. Unfortunately, due to a variety of 

reasons, much of this code has become so entangled with the 

middleware that it is difficult to “extract” its functionality and 

re-use it outside of its original context. To combat this 

tendency, we encourage all driver and algorithm development 

to occur in standalone libraries that have no dependencies on 

ROS. The ROS build system performs modular builds inside 
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the source code tree, and its use of CMake makes it 

comparatively easy to follow this “thin” ideology. Placing 

virtually all complexity in libraries, and only creating small 

executable which expose library functionality to ROS, allows 

for easier code extraction and reuse beyond its original intent. 

As an added benefit, unit testing is often far easier when code 

is factored into libraries, as standalone test programs can be 

written to exercise various features of the library. ROS re-uses 

code from numerous other open-source projects, such as the 

drivers, navigation system, and simulators from the Player 

project , vision algorithms from OpenCV , and planning 

algorithms from Open RAVE, among many others. In each 

case, ROS is used only to expose various configuration 

options and to route data into and out of the respective 

software, with as little wrapping or patching as possible 

 

• Nodes: Nodes are processes that perform computation. 

ROS is designed to be modular at a fine-grained scale; a robot 

control system usually comprises many nodes. For example, 

one node controls a laser range-finder, one node controls the 

wheel motors, one node performs localization, one node 

performs path planning, one Node provides a graphical view 

of the system, and so on. A ROS node is written with the use 

of a ROS client library, such as roscpp or rospy. 

• Master: The ROS Master provides name registration and 

lookup to the rest of the Computation Graph. Without the 

Master, nodes would not be able to find each other, exchange 

messages, or invoke services. 

• Parameter Server: The Parameter Server allows data to 

be stored by key in a central location. It is currently part of 

the Master. 

• Messages: Nodes communicate with each other by 

passing messages. A message is simply a data structure, 

comprising typed fields. Standard primitive types (integer, 

floating point, boolean, etc.) are supported, as are arrays of 

primitive types. Messages can include arbitrarily nested 

structures and arrays (much like C structs). 

• Topics: Messages are routed via a transport system with 

publish / subscribe semantics. A node sends out a message by 

publishing it to a given topic. The topic is a name that is used 

to identify the content of the message. A node that is 

interested in a certain kind of data will subscribe to the 

appropriate topic. There may be multiple concurrent 

publishers and subscribers for a single topic, and a single 

node may publish and/or subscribe to multiple topics. In 

general, publishers and subscribers are not aware of each 

others' existence. The idea is to decouple the production of 

information from its consumption. Logically, one can think of 

a topic as a strongly typed message bus. Each bus has a name, 

and anyone can connect to the bus to send or receive 

messages as long as they are the right type. 

• Services: The publish / subscribe model is a very flexible 

communication paradigm, but its many-to-many, one-way 

transport is not appropriate for request / reply interactions, 

which are often required in a distributed system. Request / 

reply is done via services, which are defined by a pair of 

message structures: one for the request and one for the reply. 

A providing node offers a service under a name and a client 

uses the service by sending the request message and awaiting 

the reply. ROS client libraries generally present this 

interaction to the programmer as if it were a remote 

procedure call. 

• Bags: Bags are a format for saving and playing back ROS 

message data. Bags are an important mechanism for storing 

data, such as sensor data, that can be difficult to collect but is 

necessary for developing and testing algorithms. 

SYSTEM ARCHITECTURE OF CLOUD ROBOTICS 

 Networked robotics can be seen as transition state between 

pre-programmed robots to cloud-enabled robots [6]. As 

previouslymentioned, cloudroboticsaimattransferringthehigh 

complexity of the computing process to the cloud platform 

through communication technology. This greatly reduces the 

computational load on individual robots. Figure 4 describes 

the main architecture of the robotic cloud. 

 
   

 
 

FIG 3.SYSTEM ARCHITECTURE OF CLOUD ROBOTICS. 

 

The architecture of cloud robotics is mainly composed of two 

parts: the cloud platform and its related equipment and the 

bottom facility. The bottom facilities usually include all types 

of mobile robots, unmanned aerial vehicles, 

machineryandotherequipment. Accordingly, thecloudplatform 

is composed of a large number of high-performance servers, 

proxy servers, massive spatial databases and other 

components. Multi-robot cooperative works, such as SLAM 

and navigation [7] networks, are typical applications of cloud 

robots. The term ‘‘networked robotics’’ refers to the 

communication mode of cloud robotics and multi-robot 

systemsarecomposedascooperativecomputingnetworksusing 

wireless communication technologies. The major advantages 

of cooperative computing networks are the following: 1) a 

collaborative computing network can gather computing and 

storage resources, and can dynamically allocate 
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theseresourcesaccordingtospecificworkrequirements; and 2) 

because of the exchange of information, decisions can be 

made cooperatively between machines. The nodes’ computing 

and storage capabilities’ deficiency in networked robotic 

systems may lead to large delays, while in cloud robotic 

systems the nodes can collaborate with spare nodes by 

transferringcomputingorstoragetasks. 

 

 

. 

 
 

FIGURE 4:IMPLEMENTATION OF CLOUD ROBOTICS IN 

INDUSTRIAL ENVIRONMENT 

 

connected to the cloud resource can connect to the cloud 

through other nodes that have already established links to 

thecloud. Theapplicationofthismechanismgreatlyexpands the 

manageable complexities of tasks accomplished through 

multi-robot cooperative work and enhances the efficiency of 

specific work tasks. Othertasksthatdo 

notinvolveaneedforadditionalrobots but require complex 

operations, such as grasping, are also hot research areas. Due 

to the fact that the target object is usually unknown, several 

researchers have so far proposed the incorporation of a large 

number of sensing devices on the grabbing body [8], aiming 

to improve the accuracy of grasping. However, in actual 

industrial environments, a demand for high accuracy and 

fewer sensors is more in line with production practices [9]. At 

the same time, due to the limitation of physical space and 

materials, the equipment and storage facilities are limited. 

This leads to a bottleneck of development and research. With 

the introduction of big data, with a small amount of sensor 

and other characteristic data uploaded, researchers can 

determine a match in the cloud. Then the characteristic data 

of the grab motion are downloaded and sent to the 

mechanical equipment for execution of the operation. An 

example of the applications of cloud robotics including 

SLAM and Grasping is shown in Figure 2. In summary, the 

main features of the cloud robotics architecture are as follows.  

1) In the cloud infrastructure, where computing tasks are 

dynamic and resources are elastic and availableon-demand. 

2) Thecloudrobotics’‘‘brain’’isin the   cloud. 

Theresultsofprocessingcanbeobtainedthroughnetworkingtechn

ologies, whiletasksareprocessedindividually. 

3) Computingworkcanbedelegatedtothecloud, whichleads to a 

smaller robot load and greatly extended battery life. 

 
 

 CLOUD ROBOTICS PLATFORM  

 

Developing software solutions for robots is difficult, because 

of varying hardware and non-standardized APIs. Robotics 

researchers, have created a variety of frameworks to manage 

complexity and facilitate rapid prototyping of software for 

experiments, resulting in the many robotic software systems 

currently used in academia and industry [14].Stanford 

University and Willow Garage developed a generalized open 

source operating system called Robot Operating System 

(ROS) for robots. ROS is not only an operating system; 

rather, it provides a structured communications layer above 

the host operating systems of a heterogeneous compute 

cluster.Rapyuta is an open source cloud robotics platform. It 

serves a platform-as-a-service (PaaS) framework for robots. 

Rapyutaarchitecture depends on LxCcontainers.  It provides 

an environment to access RoboEarth. Knowledge Repository. 

Massively parallel computation, allowing humans to monitor 

or intervene robots and serving as a global repository to store 

and share object models, environment maps, and actions 

recipes between various robotic platforms are some of 

specifications of Rapyuta. It is a competitor of Rosbridgein 

terms of communication. Survivable Cloud MultiRobotics 

(SCMR) Framework is designed, implemented and evaluated 

for heterogeneous environments. One of the challenges for 

cloud robotics is the inherent problem of cloud disconnection. 

The SCMR framework provides the combination of a virtual 

Ad-hoc network formed by robot-to-robot communication and 

a  

 

FIG 5: CLASSIFICATION OF ROBOTS 

physical cloud infrastructure formed by robot-to cloud 

communications. The design trade-off for SCMR is between 

the computation energy for the robot execution and the 

offloading energy for the cloud execution. The SCMR 

framework uses Web Sockets protocol for communication 

between the individual robots and the cloud server. In case of 

TTIC, 2017, Vol.1, 27-33

30



cloud disconnection a virtual ad hoc cloud is created between 

the individual robots and the robot leader and the individual 

robots communicate with one another through the gossip 

protocol.Distributed Agents with Collective Intelligence 

(DAvinCi) is a software framework that provides the 

scalability and parallelism advantages of cloud computing for 

service robots in large environments. It is implemented as a 

system around the Hadoop cluster with ROS as the messaging 

framework.  
 

 

 

CLOUD-ENABLED ROBOTS  

 

Robots have some constraints in terms of computational 

capacity, memory and storage. CR help them to overcome 

these challenges. Opportunity to use cloud allows cost 

effective robots to be produced. Robots can be classified as 

traditional robots and cloud-enabled robots. This paper 

focuses on cloud-enabled robots. A cloud technology not only 

empowers robots but also it allows them to network each 

other regardless of distance. Cloud-enabled robots are divided 

into two categories as standalone robots and networked  

robots. Classification of robots is shown in Figure 2.  

  

Standalone robots can benefit from cloud in terms of 

computation power, storage capacity and memory. However, 

networked robots can make networks, share their information 

through cloud and can perform collaborative works. CR 

infrastructure with standalone robots and networked robots is 

presented in Fig. 6.  

FIG.6: STANDALONE AND NETWORKED ROBOTS 

in Fig. 6. Robots can do a wide variety of works such as 

grasping, identifying objects, SLAM, monitoring, networking 

and some other actuating works. Robots can grasp formerly 

known objects easily. They can also grasp novel objects with 

the help of cloud. In, a study aboutgrasp planning in the 

presence of shape uncertainty and how cloud computing can 

facilitate parallel Monte Carlo sampling is presented. Kehoe 

et al focus on parallel-jaw push grasping for the class of parts 

that can be modelled as extruded 2-D polygons with statistical 

tolerancing. SLAM refers to a technique for a robot or an 

autonomous vehicle to build a map of the environment 

without a priori knowledge, and to simultaneously localize 

itself in the unknown environment. SLAM is important in 

robotics and there are plenty of researches. It consists of 

statistical techniques such as Kalman filters, mapping and 

sensing. Riazuelo et al develop a cloud framework which 

name is Cloud framework for Cooperative Tracking and 

Mapping  (C2TAM). This is a visual SLAM system based a 

distributed framework where the CPU-intensive map 

optimization and storage is allocated as a service in the 

Cloud, while a light camera runs on robots for tracking. The 

robots need only internet connection for tracking and 

cooperative repositioning.  C2TAM providesa database 

consisting maps can be built and stored, stored maps can be 

reused by other robots. A robot can fuse its map online with a 

map already in the database, and several robots can estimate 

individual maps and fuse them together if an overlap is 

detected. Virtual monitoring technology has been applied in 

more and more fields such as military, education, medical 

science, manufacturing engineering, and so forth. In order to 

realize resource sharing among all collaborating robots in a 

virtual monitoring system, cloud computing is proposed by 

combining professional computing equipment as a super 

virtual computing center. Zhang et al, proposed 3D virtual 

monitoring system based on CR. This system‟s architecture 

consist of communication language for agent communication, 

algorithm for cooperative working and conflict resolution. 

Prototype system is applied for the monitoring of  fully  

mechanized  coal-mining equipment. Networking robots 

overcome the limitations of stand-alone robots by having 

robots, environment sensors, and humans communicate and 

cooperate through a network. Mateo et al, presented a work to 

decrease message overhead occurred because of 

communication. The proposed an information sharing model 

for group communication based on  Brownian  agent  

approach.  In presented work they grouped robots in clusters 

with a cluster head to overcome message overhead . Kamei et 

al, proposed prototype infrastructure of cloud networked 

robotics enables multi-location robotic services for life 

support. Their study focuses on requirements in typical daily 

supporting services through example scenarios that target 

senior citizens and the disabled.  

ADVANTAGES 

• Offloads the heavy computing tasks to the cloud. 

• Lower the barrier to entry for robotics 

• Scalable CPU, memory and storage 

• Shared knowledge database 

• Hardware upgrades are invisible & hassle free 

• Longer battery life. 

• Lighter and easier to maintain hardware. 

• Robot experiences/history/behavior outcomes/learned 

skills can all be published or data mined. 

• Expanding the knowledge  

beyond “physical body”.  
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DISADVANTAGES 

Cloud robotics is still taking baby steps, so will have to wait 

for the platforms to develop. 

Cloud based applications can get slow or simply become 

unavailable leaving the robot “brainless”. 

Tasks that involve real time execution require onboard 

processing. 

ROBOTIC APPLICATIONS  

Future robotic applications will benefit from cloud robotics, 

which provides the following advantages over traditional 

networked robots. • Ability to offload computation-intensive 

tasks to the cloud. The robots only have to keep necessary 

sensors, actuators, and basic processing power to enable real-

time actions (e.g., real-time control). The battery life is 

extended, and the robotic platform becomes lighter and less 

expensive with easier to maintain hardware. The maintenance 

of software onboard with the robots also becomes simpler, 

with less need for regular updates. As the cloud hardware can 

be upgraded independently from the robotic network, the 

operational life and usefulness of the robotic network can be 

easily extended. • Access to vast amounts of data. The robots 

can acquire information and knowledge to execute tasks 

through databases in the cloud. They do not have to deal with 

the creation and maintenance of such data. • Access to shared 

knowledge and new skills. The cloud provides a medium for 

the robots to share information and learn new skills and 

knowledge from each other. The cloud can host a database or 

library of skills or behaviors that map to different task 

requirements and environmental complexities. The 

RoboEarth project [12] is trying to turn this into a reality. 

Due to these advantages, cloud robotics has a wide range of 

potential applications in data-intensive or 

computationintensive tasks in the areas of intelligent 

transportation, environment monitoring, health care, smart 

home, entertainment, education, and defense. In this section, 

we discuss the opportunities and challenges that cloud 

robotics brings to traditional robotic applications. 

Specifically, we focus on three robotic applications: SLAM, 

grasping, and navigation SLAM  

SLAM 

SLAM refers to a technique for a robot or an autonomous 

vehicle to build a map of the environment without a 

prioriknowledge, and to simultaneously localize itself in the 

unknown environment. SLAM, especially vision-based 

SLAM and cooperative SLAM, are both data intensive and 

computation intensive. The steps such as map fusion and 

filtering for state estimation can be processed in a parallel 

fashion. Thus, these tasks can be offloaded to the cloud. For 

example, a grid based FastSLAM is implemented in a cloud 

computing framework as reported in . As demonstrated in , 

the cloud can substantially improve the implementation speed 

of  SLAM 

 GRASPING  

Robotic grasping has been an active research topic over a few 

decades. If the full 3-D model of the object is precisely 

known, then various methods can be applied to synthesize the 

grasp. If the object is unknown or not precisely known, the 

problem is much more challenging, and involves the access 

and pre-processing of vast amounts of data and can be 

computationally intensive. Recently, information-based or 

data-driven grasping methods  have been developed to enable 

robotic grasping for any hand and any object. These methods 

requires access to large databases. By offloading this task to 

the cloud, grasping can be facilitated without requiring vast 

amounts of computing power, data, and storage space on the 

robotic platform. In addition, model knowledge of new objects 

learned by different robots can be shared in the cloud for 

future usage by other robots. 

NAVIGATION  

Robotic navigation refers to a robot’s activity to determine its 

own position with respect to a certain reference and then plan 

a path to reach a desired location. It can involve a 

combination of tasks such as localization, path planning, and 

mapping. Basically, there are two types of approaches: map-

less approaches and map-based approaches . Map-less 

approaches rely on the observations of the perception sensors 

for navigation. Due to the limited onboard resources, these 

approaches usually suffer from reliability issues. Map-based 

robotic navigation is relatively reliable if a precise map is 

available. It can either use a known map or build a map 

during the navigation. However, the process of building the 

map requires large amounts of storage space and is 

computationally intensive. On the other hand, the process of 

searching a map requires access to large amounts of data, 

which is challenging if the navigation area is large. Cloud 

robotics provides a very promising solution for future cloud-

enabled navigation that avoids these two challenges. The 

cloud can not only provide storage space to store the large 

amount of map data, but also provide processing power to 

facilitate the building and searching of the map quickly. 

Through the cloud, commercially available maps (e.g., 

Google maps) can also be leveraged to develop reliable, agile, 

and long-range autonomous navigation solutions. 

CONCLUSION  

This paper presents cloud computing, cloud robotics and 

cloud interaction of robots. It surveys cloud platforms and 

cloud-enabled robotics studies. Standalone robots can benefit 

cloud technologies and networked robots can perform 

collaborative works. Networked cloud-enabled robots can 
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share computation resources, information and data with each 

other and can access new knowledge and skills not learned by 

them. This is a new paradigm in robotics that webelieve leads 

to exciting future developments. Future works can focus on 

reliable connection, data offloading methods and ubiquitous 

networking among robots and cloud services 
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