
Cloud Robotics Architectures: Challenges and Applications

Aindrila Mukherjee

Department of Electronics and Communication Engineering

Techno India University, West Bengal

EM-4, Salt Lake City, Sector V, Kolkata, West Bengal 700091

Abstract - Cloud robotics is an evolving field that allows

robots to offload computation and storage intensive jobs into the

cloud. Robots are limited in terms of computational memory and

storage. Cloud provides unlimited computation memory,

storage and especially collaboration opportunity. Cloud-enabled

robots are divided into two categories , standalone and

networked robots. This paper surveys cloud robotic platforms,

standalone and networked robotic works such as simultaneous

localization and mapping (SLAM).[5]

Index Terms - cloud-enabled robots, cloud robotics, cloud

technologies, standalone and networked robots, Software as a

Service, Platform as a Service, Infrastructure as a Service..

I. INTRODUCTION

Cloud robotics is a field of robotics that invokes cloud

technologies such as cloud computing, cloud storage, and

other Internet technologies on the benefits of converged

infrastructure and shared services for robotics. When

connected to cloud, robots can benefit from the powerful

computation, and communication resources of modern data

centre in the cloud, which can process and share in sequence

from various robots or agent (other machines, smart objects,

etc.). Humans can also hand over tasks to robots remotely

through networks. Cloud computing technologies enable

robot systems to be endowed with powerful capability whilst

reducing costs through cloud technologies. Thus, it is possible

to build lightweight, low cost, smarter robots have intelligent

"brain" in the cloud. The "brain" consists of data centre,

knowledge base, task planners, deep learning, information

processing, environment models, communication support,

etc.[1][2][3][4]

CLOUD COMPUTING TECHNOLOGIES

Cloud computing consist of three models as Software as a

Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS) as shown in fig 1.SaaS

applications are served over the internet, thus eliminating the

need to install and run the application on the users system.

Theyare managed from a central location and accessed

remotely by a web browser or a mobile client. Google Apps is

the most widely used SaaS application suit. PaaS refers to

computing platform served by cloud infrastructure. PaaS

offers developers to get hold of all the systems and

environments required for the life cycle of software, be it

testing, deploying and hosting of web applications. IaaS

provides,the required infrastructure as a service. The client

need not buy the required servers, data centre or the network

resources. The spirit of IaaS model is a pay-as-you-go

monetary model. Amazon and Microsoft are also IaaS

providers.

FIG.1: CLOUD COMPUTING INFRASTRUCTURE

Robots make significant socio-economic impacts to human

lives [10]. For example, robots can do repeatitive or

dangerous tasks, such as painting, packaging, and welding.

However, robots are limited in terms of computational

capacity and storage. Also they have physical constraints such

as size, shape, motion mode and working environment [11].

Robots are usually used for industrial purposes; they are not

usually used in daily life due to their cost. Cloud computing

can be used to enhance robot capabilities. Cloud computing

technologies provide many advantages that can be valuable

for working and running robot services. For example complex

computations of computation intensive applications, can be

offloaded in the cloud like Apple’s voice recognition service

“Siri”. Connecting the robots to semantic knowledge

databases hosted in cloud will allow a large number of varied

robots to share common sense knowledge [12]. The concept

of “robot-as-a-service”(RaaS) refers to robots that can be

vigorously combined to give support to the execution of

specific applications. RaaS has three aspects: structure,

interface, and behaviour. There can be many kinds of robot

intelligent devices. For example, robot cops [13], restaurant

robot waiters [14], robot pets [15], and patient care robots

[16]. These robots are spread in different locations and can be

accessed through CR platforms.

ROS (ROBOTICS OPERATING SYSTEM)

TTIC, 2017, Vol.1, 27-33

27

Writing software for robots is not easy, particularly as the

scope of robotics continues to grow. Different types of robots

can have varying hardware, making code reuse non trivial.

On top of this, the size of the required code can be

intimidating, as it must contain a stack starting from driver-

level software and continuing up through abstract reasoning,

and beyond. Since the breadth of expertise is well beyond the

capabilities of single researcher.Robotics software

architectures must also support large-scale software

combination efforts. To meet these challenges many robotics

researchers, have previously created a variety of frameworks

to manage complexity and ease rapid prototyping of software

for experiments, resulting in the many robotic software

systems currently used in academia and industry [17]. Each of

these frameworks was intended for a particular purpose,

perhaps in response to perceived weakness of other available

frameworks, or to place stress on aspects which were seen as

most important in the design process. ROS, the framework is

also the product of trade-offs and prioritizations made during

its design cycle. We believe its importance on large-scale

robotics research will be useful in a wide variety of situation,

as robotic systems grow ever more complex. In this paper we

discuss,the design goals of ROS, how our implementations

work towards them, and demonstrate how ROS handles

several common use cases of robotics software development.

We do not claim that ROS is the best framework for all

robotics software. In fact, we do not believe that such a

framework exists.The field of robotics is too broad for a single

solution. ROS was designed to meet a precise set of

challenges encountered when developing large-scale

FIG. 2. A TYPICAL ROS NETWORK CONFIGURATION

service robots as part of the STAIR project [18] at Stanford

University1 and the Personal Robots Program [19] at Willow

Garage2 but the resulting architecture is more general than

the service robot and mobile manipulation domains. The

philosophical goals of ROS can be summarized as:

• Peer-to-peer

• Tools-based

• Multi-lingual

• Thin

• Free and Open-Source To our knowledge,

A. Peer-to-Peer A system built using ROS consists a number

of processes, potentially on different hosts, connected at

runtime in a peer-to-peer topology. Although frameworks

based on a central server can also realize the profit of the

multi-process and multi-host design.Central data server is

problematic if computers are connected in a heterogeneous

network.

B. Multi-lingual When writing code many individuals have

preferences for some programming languages above others.

These preferences are the result of personal trade-offs

between programming time, ease of debugging, syntax,

runtime efficiency, and a host of other reasons, both technical

and cultural. For these reasons, we have designed ROS to be

language-neutral. ROS currently supports four very different

languages: C++, Python, Octave, and LISP, with other

language ports in various states of completion. The ROS

specification is at the messaging layer, not any deeper. Peer-

to-peer connection negotiation and configuration occurs in

XML-RPC, for which reasonable implementations exist in

most major languages. Rather than provide a C-based

implementation with stub interfaces generated for all major

languages, we prefer instead to implement ROS natively in

each target language, to better follow the conventions of each

language. However, in some cases it is expedient to add

support for a new language by wrapping an existing library:

the Octave client is implemented by wrapping the ROS C++

library. To support cross-language development, ROS uses a

simple, language-neutral interface definition language (IDL)

to describe the messages sent between modules. The IDL uses

(very) short text files to describe fields of each message, and

allows composition of messages, as illustrated by the

complete IDL file for a point cloud message:

Header header

Point32[] pts

ChannelFloat32[] chan

C. Tools-based

In an effort to manage the complexity of ROS, we have opted

for a microkernel design, where a large number of small tools

are used to build and run the various ROS components, rather

than constructing a monolithic development and runtime

environment. These tools perform various tasks, e.g., navigate

the source code tree, get and set configuration parameters,

visualize the peer-to-peer connection topology, measure

bandwidth utilization, graphically plot message data, auto-

generate documentation, and so on. Although we could have

implemented core services such as a global clock and a logger

inside the master module, we have attempted to push

everything into separate modules. We believe the loss in

efficiency is more than offset by the gains in stability and

complexity management.

D. Thin

As eloquently described in , most existing robotics software

projects contain drivers or algorithms which could be reusable

outside of the project. Unfortunately, due to a variety of

reasons, much of this code has become so entangled with the

middleware that it is difficult to “extract” its functionality and

re-use it outside of its original context. To combat this

tendency, we encourage all driver and algorithm development

to occur in standalone libraries that have no dependencies on

ROS. The ROS build system performs modular builds inside

TTIC, 2017, Vol.1, 27-33

28

the source code tree, and its use of CMake makes it

comparatively easy to follow this “thin” ideology. Placing

virtually all complexity in libraries, and only creating small

executable which expose library functionality to ROS, allows

for easier code extraction and reuse beyond its original intent.

As an added benefit, unit testing is often far easier when code

is factored into libraries, as standalone test programs can be

written to exercise various features of the library. ROS re-uses

code from numerous other open-source projects, such as the

drivers, navigation system, and simulators from the Player

project , vision algorithms from OpenCV , and planning

algorithms from Open RAVE, among many others. In each

case, ROS is used only to expose various configuration

options and to route data into and out of the respective

software, with as little wrapping or patching as possible

• Nodes: Nodes are processes that perform computation.

ROS is designed to be modular at a fine-grained scale; a robot

control system usually comprises many nodes. For example,

one node controls a laser range-finder, one node controls the

wheel motors, one node performs localization, one node

performs path planning, one Node provides a graphical view

of the system, and so on. A ROS node is written with the use

of a ROS client library, such as roscpp or rospy.

• Master: The ROS Master provides name registration and

lookup to the rest of the Computation Graph. Without the

Master, nodes would not be able to find each other, exchange

messages, or invoke services.

• Parameter Server: The Parameter Server allows data to

be stored by key in a central location. It is currently part of

the Master.

• Messages: Nodes communicate with each other by

passing messages. A message is simply a data structure,

comprising typed fields. Standard primitive types (integer,

floating point, boolean, etc.) are supported, as are arrays of

primitive types. Messages can include arbitrarily nested

structures and arrays (much like C structs).

• Topics: Messages are routed via a transport system with

publish / subscribe semantics. A node sends out a message by

publishing it to a given topic. The topic is a name that is used

to identify the content of the message. A node that is

interested in a certain kind of data will subscribe to the

appropriate topic. There may be multiple concurrent

publishers and subscribers for a single topic, and a single

node may publish and/or subscribe to multiple topics. In

general, publishers and subscribers are not aware of each

others' existence. The idea is to decouple the production of

information from its consumption. Logically, one can think of

a topic as a strongly typed message bus. Each bus has a name,

and anyone can connect to the bus to send or receive

messages as long as they are the right type.

• Services: The publish / subscribe model is a very flexible

communication paradigm, but its many-to-many, one-way

transport is not appropriate for request / reply interactions,

which are often required in a distributed system. Request /

reply is done via services, which are defined by a pair of

message structures: one for the request and one for the reply.

A providing node offers a service under a name and a client

uses the service by sending the request message and awaiting

the reply. ROS client libraries generally present this

interaction to the programmer as if it were a remote

procedure call.

• Bags: Bags are a format for saving and playing back ROS

message data. Bags are an important mechanism for storing

data, such as sensor data, that can be difficult to collect but is

necessary for developing and testing algorithms.

SYSTEM ARCHITECTURE OF CLOUD ROBOTICS

 Networked robotics can be seen as transition state between

pre-programmed robots to cloud-enabled robots [6]. As

previouslymentioned, cloudroboticsaimattransferringthehigh

complexity of the computing process to the cloud platform

through communication technology. This greatly reduces the

computational load on individual robots. Figure 4 describes

the main architecture of the robotic cloud.

FIG 3.SYSTEM ARCHITECTURE OF CLOUD ROBOTICS.

The architecture of cloud robotics is mainly composed of two

parts: the cloud platform and its related equipment and the

bottom facility. The bottom facilities usually include all types

of mobile robots, unmanned aerial vehicles,

machineryandotherequipment. Accordingly, thecloudplatform

is composed of a large number of high-performance servers,

proxy servers, massive spatial databases and other

components. Multi-robot cooperative works, such as SLAM

and navigation [7] networks, are typical applications of cloud

robots. The term ‘‘networked robotics’’ refers to the

communication mode of cloud robotics and multi-robot

systemsarecomposedascooperativecomputingnetworksusing

wireless communication technologies. The major advantages

of cooperative computing networks are the following: 1) a

collaborative computing network can gather computing and

storage resources, and can dynamically allocate

TTIC, 2017, Vol.1, 27-33

29

theseresourcesaccordingtospecificworkrequirements; and 2)

because of the exchange of information, decisions can be

made cooperatively between machines. The nodes’ computing

and storage capabilities’ deficiency in networked robotic

systems may lead to large delays, while in cloud robotic

systems the nodes can collaborate with spare nodes by

transferringcomputingorstoragetasks.

.

FIGURE 4:IMPLEMENTATION OF CLOUD ROBOTICS IN

INDUSTRIAL ENVIRONMENT

connected to the cloud resource can connect to the cloud

through other nodes that have already established links to

thecloud. Theapplicationofthismechanismgreatlyexpands the

manageable complexities of tasks accomplished through

multi-robot cooperative work and enhances the efficiency of

specific work tasks. Othertasksthatdo

notinvolveaneedforadditionalrobots but require complex

operations, such as grasping, are also hot research areas. Due

to the fact that the target object is usually unknown, several

researchers have so far proposed the incorporation of a large

number of sensing devices on the grabbing body [8], aiming

to improve the accuracy of grasping. However, in actual

industrial environments, a demand for high accuracy and

fewer sensors is more in line with production practices [9]. At

the same time, due to the limitation of physical space and

materials, the equipment and storage facilities are limited.

This leads to a bottleneck of development and research. With

the introduction of big data, with a small amount of sensor

and other characteristic data uploaded, researchers can

determine a match in the cloud. Then the characteristic data

of the grab motion are downloaded and sent to the

mechanical equipment for execution of the operation. An

example of the applications of cloud robotics including

SLAM and Grasping is shown in Figure 2. In summary, the

main features of the cloud robotics architecture are as follows.

1) In the cloud infrastructure, where computing tasks are

dynamic and resources are elastic and availableon-demand.

2) Thecloudrobotics’‘‘brain’’isin the cloud.

Theresultsofprocessingcanbeobtainedthroughnetworkingtechn

ologies, whiletasksareprocessedindividually.

3) Computingworkcanbedelegatedtothecloud, whichleads to a

smaller robot load and greatly extended battery life.

 CLOUD ROBOTICS PLATFORM

Developing software solutions for robots is difficult, because

of varying hardware and non-standardized APIs. Robotics

researchers, have created a variety of frameworks to manage

complexity and facilitate rapid prototyping of software for

experiments, resulting in the many robotic software systems

currently used in academia and industry [14].Stanford

University and Willow Garage developed a generalized open

source operating system called Robot Operating System

(ROS) for robots. ROS is not only an operating system;

rather, it provides a structured communications layer above

the host operating systems of a heterogeneous compute

cluster.Rapyuta is an open source cloud robotics platform. It

serves a platform-as-a-service (PaaS) framework for robots.

Rapyutaarchitecture depends on LxCcontainers. It provides

an environment to access RoboEarth. Knowledge Repository.

Massively parallel computation, allowing humans to monitor

or intervene robots and serving as a global repository to store

and share object models, environment maps, and actions

recipes between various robotic platforms are some of

specifications of Rapyuta. It is a competitor of Rosbridgein

terms of communication. Survivable Cloud MultiRobotics

(SCMR) Framework is designed, implemented and evaluated

for heterogeneous environments. One of the challenges for

cloud robotics is the inherent problem of cloud disconnection.

The SCMR framework provides the combination of a virtual

Ad-hoc network formed by robot-to-robot communication and

a

FIG 5: CLASSIFICATION OF ROBOTS

physical cloud infrastructure formed by robot-to cloud

communications. The design trade-off for SCMR is between

the computation energy for the robot execution and the

offloading energy for the cloud execution. The SCMR

framework uses Web Sockets protocol for communication

between the individual robots and the cloud server. In case of

TTIC, 2017, Vol.1, 27-33

30

cloud disconnection a virtual ad hoc cloud is created between

the individual robots and the robot leader and the individual

robots communicate with one another through the gossip

protocol.Distributed Agents with Collective Intelligence

(DAvinCi) is a software framework that provides the

scalability and parallelism advantages of cloud computing for

service robots in large environments. It is implemented as a

system around the Hadoop cluster with ROS as the messaging

framework.

CLOUD-ENABLED ROBOTS

Robots have some constraints in terms of computational

capacity, memory and storage. CR help them to overcome

these challenges. Opportunity to use cloud allows cost

effective robots to be produced. Robots can be classified as

traditional robots and cloud-enabled robots. This paper

focuses on cloud-enabled robots. A cloud technology not only

empowers robots but also it allows them to network each

other regardless of distance. Cloud-enabled robots are divided

into two categories as standalone robots and networked

robots. Classification of robots is shown in Figure 2.

Standalone robots can benefit from cloud in terms of

computation power, storage capacity and memory. However,

networked robots can make networks, share their information

through cloud and can perform collaborative works. CR

infrastructure with standalone robots and networked robots is

presented in Fig. 6.

FIG.6: STANDALONE AND NETWORKED ROBOTS

in Fig. 6. Robots can do a wide variety of works such as

grasping, identifying objects, SLAM, monitoring, networking

and some other actuating works. Robots can grasp formerly

known objects easily. They can also grasp novel objects with

the help of cloud. In, a study aboutgrasp planning in the

presence of shape uncertainty and how cloud computing can

facilitate parallel Monte Carlo sampling is presented. Kehoe

et al focus on parallel-jaw push grasping for the class of parts

that can be modelled as extruded 2-D polygons with statistical

tolerancing. SLAM refers to a technique for a robot or an

autonomous vehicle to build a map of the environment

without a priori knowledge, and to simultaneously localize

itself in the unknown environment. SLAM is important in

robotics and there are plenty of researches. It consists of

statistical techniques such as Kalman filters, mapping and

sensing. Riazuelo et al develop a cloud framework which

name is Cloud framework for Cooperative Tracking and

Mapping (C2TAM). This is a visual SLAM system based a

distributed framework where the CPU-intensive map

optimization and storage is allocated as a service in the

Cloud, while a light camera runs on robots for tracking. The

robots need only internet connection for tracking and

cooperative repositioning. C2TAM providesa database

consisting maps can be built and stored, stored maps can be

reused by other robots. A robot can fuse its map online with a

map already in the database, and several robots can estimate

individual maps and fuse them together if an overlap is

detected. Virtual monitoring technology has been applied in

more and more fields such as military, education, medical

science, manufacturing engineering, and so forth. In order to

realize resource sharing among all collaborating robots in a

virtual monitoring system, cloud computing is proposed by

combining professional computing equipment as a super

virtual computing center. Zhang et al, proposed 3D virtual

monitoring system based on CR. This system‟s architecture

consist of communication language for agent communication,

algorithm for cooperative working and conflict resolution.

Prototype system is applied for the monitoring of fully

mechanized coal-mining equipment. Networking robots

overcome the limitations of stand-alone robots by having

robots, environment sensors, and humans communicate and

cooperate through a network. Mateo et al, presented a work to

decrease message overhead occurred because of

communication. The proposed an information sharing model

for group communication based on Brownian agent

approach. In presented work they grouped robots in clusters

with a cluster head to overcome message overhead . Kamei et

al, proposed prototype infrastructure of cloud networked

robotics enables multi-location robotic services for life

support. Their study focuses on requirements in typical daily

supporting services through example scenarios that target

senior citizens and the disabled.

ADVANTAGES

• Offloads the heavy computing tasks to the cloud.

• Lower the barrier to entry for robotics

• Scalable CPU, memory and storage

• Shared knowledge database

• Hardware upgrades are invisible & hassle free

• Longer battery life.

• Lighter and easier to maintain hardware.

• Robot experiences/history/behavior outcomes/learned

skills can all be published or data mined.

• Expanding the knowledge

beyond “physical body”.

TTIC, 2017, Vol.1, 27-33

31

DISADVANTAGES

Cloud robotics is still taking baby steps, so will have to wait

for the platforms to develop.

Cloud based applications can get slow or simply become

unavailable leaving the robot “brainless”.

Tasks that involve real time execution require onboard

processing.

ROBOTIC APPLICATIONS

Future robotic applications will benefit from cloud robotics,

which provides the following advantages over traditional

networked robots. • Ability to offload computation-intensive

tasks to the cloud. The robots only have to keep necessary

sensors, actuators, and basic processing power to enable real-

time actions (e.g., real-time control). The battery life is

extended, and the robotic platform becomes lighter and less

expensive with easier to maintain hardware. The maintenance

of software onboard with the robots also becomes simpler,

with less need for regular updates. As the cloud hardware can

be upgraded independently from the robotic network, the

operational life and usefulness of the robotic network can be

easily extended. • Access to vast amounts of data. The robots

can acquire information and knowledge to execute tasks

through databases in the cloud. They do not have to deal with

the creation and maintenance of such data. • Access to shared

knowledge and new skills. The cloud provides a medium for

the robots to share information and learn new skills and

knowledge from each other. The cloud can host a database or

library of skills or behaviors that map to different task

requirements and environmental complexities. The

RoboEarth project [12] is trying to turn this into a reality.

Due to these advantages, cloud robotics has a wide range of

potential applications in data-intensive or

computationintensive tasks in the areas of intelligent

transportation, environment monitoring, health care, smart

home, entertainment, education, and defense. In this section,

we discuss the opportunities and challenges that cloud

robotics brings to traditional robotic applications.

Specifically, we focus on three robotic applications: SLAM,

grasping, and navigation SLAM

SLAM

SLAM refers to a technique for a robot or an autonomous

vehicle to build a map of the environment without a

prioriknowledge, and to simultaneously localize itself in the

unknown environment. SLAM, especially vision-based

SLAM and cooperative SLAM, are both data intensive and

computation intensive. The steps such as map fusion and

filtering for state estimation can be processed in a parallel

fashion. Thus, these tasks can be offloaded to the cloud. For

example, a grid based FastSLAM is implemented in a cloud

computing framework as reported in . As demonstrated in ,

the cloud can substantially improve the implementation speed

of SLAM

 GRASPING

Robotic grasping has been an active research topic over a few

decades. If the full 3-D model of the object is precisely

known, then various methods can be applied to synthesize the

grasp. If the object is unknown or not precisely known, the

problem is much more challenging, and involves the access

and pre-processing of vast amounts of data and can be

computationally intensive. Recently, information-based or

data-driven grasping methods have been developed to enable

robotic grasping for any hand and any object. These methods

requires access to large databases. By offloading this task to

the cloud, grasping can be facilitated without requiring vast

amounts of computing power, data, and storage space on the

robotic platform. In addition, model knowledge of new objects

learned by different robots can be shared in the cloud for

future usage by other robots.

NAVIGATION

Robotic navigation refers to a robot’s activity to determine its

own position with respect to a certain reference and then plan

a path to reach a desired location. It can involve a

combination of tasks such as localization, path planning, and

mapping. Basically, there are two types of approaches: map-

less approaches and map-based approaches . Map-less

approaches rely on the observations of the perception sensors

for navigation. Due to the limited onboard resources, these

approaches usually suffer from reliability issues. Map-based

robotic navigation is relatively reliable if a precise map is

available. It can either use a known map or build a map

during the navigation. However, the process of building the

map requires large amounts of storage space and is

computationally intensive. On the other hand, the process of

searching a map requires access to large amounts of data,

which is challenging if the navigation area is large. Cloud

robotics provides a very promising solution for future cloud-

enabled navigation that avoids these two challenges. The

cloud can not only provide storage space to store the large

amount of map data, but also provide processing power to

facilitate the building and searching of the map quickly.

Through the cloud, commercially available maps (e.g.,

Google maps) can also be leveraged to develop reliable, agile,

and long-range autonomous navigation solutions.

CONCLUSION

This paper presents cloud computing, cloud robotics and

cloud interaction of robots. It surveys cloud platforms and

cloud-enabled robotics studies. Standalone robots can benefit

cloud technologies and networked robots can perform

collaborative works. Networked cloud-enabled robots can

TTIC, 2017, Vol.1, 27-33

32

share computation resources, information and data with each

other and can access new knowledge and skills not learned by

them. This is a new paradigm in robotics that webelieve leads

to exciting future developments. Future works can focus on

reliable connection, data offloading methods and ubiquitous

networking among robots and cloud services

ACKNOWLEDGMENT

I take this opportunity to express my profound gratitude

and deep regards to my guide Dr.AsitBaran Bhattacharya,

Professor, Department of Electronics and Communication,

Techno India University for his exemplary guidance,

monitoring and encouragement throughout the course of this

paper.

REFERENCES

[1] "Cloud Robotics and Automation A special issue of the IEEE Transactions

on Automation Science and Engineering". IEEE. Retrieved 7 December

2014.

[2] "RoboEarth".

[3] Goldberg, Ken. "Cloud Robotics and Automation".

[4] Li, R. "Cloud Robotics-Enable cloud computing for robots". Retrieved 7

December 2014

[5] CLOUD ROBOTICS AND AUTOMATION Srujikanth Das1, Rekam

Saikiran2, R.VenkataRamana IJEEE Vol.No.8 Issue 01 January-June 2016

[6] G. Hu, W. P. Tay, and Y. Wen, ‘‘Cloud robotics: Architecture, challenges

and applications,’’ IEEE Netw., vol. 26, no. 3, pp. 21–28, May/Jun. 2012.

[7] I. M. Rekleitis, G. Dudek, and E. E. Milios, ‘‘Multi-robot cooperative

localization: A study of trade-offs between efficiency and accuracy,’’ in

Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3. Sep. 2002, pp. 2690–

2695.

[8] J. Felip and A. Morales, ‘‘Robust sensor-based grasp primitive for a

threefinger robot hand,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,

Oct. 2009, pp. 1811–1816.

[9] J.Liu,Q.Wang,J.Wan,andJ.Xiong,‘‘Towardsreal-timeindoorlocalization in

wireless sensor networks,’’ in Proc. 12th IEEE Int. Conf. Comput. Inf.

Technol., Chengdu, China, Oct. 2012, pp. 877–884.

[10]B. Siciliano and O. Khatib, Eds.: Springer Handbook of Robotics,Springer,

2008.

[11]Guoqiang Hu, Wee Peng Tay, Yonggang Wen: Cloud robotics:architecture,

challenges and applications, Network, IEEE , vol.26, no.3, pp.21,28, May-

June 2012.

[12]A. Chibani, Y. Amirat, S. Mohammed, E. Matson, N Hagita, M.Barreto:

Ubiquitous robotics: Recent challenges and future trends. Robotics and

Autonomous Systems ,2013.

[13]Wired Blog, Robot Cops to Patrol Korean Streets [Online].

[14]Robot Waiters [Online]. Available:http://www.technovelgy.com/ct/Science-

Fiction.

[15]Robot Pets [Online]. Available: http://en.wikipedia.org/wiki/AIBO

[16] Robot to be added at Hoag Hospital Irvine [Online]. Available:

http://www.intouchhealth.com/

[17]J. Kramer and M. Scheutz, “Development environments for autonomous

mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–132,

2007.

[18]M. Quigley, E. Berger, and A. Y. Ng, “STAIR: Hardware and Software

Architecture,” in AAAI 2007 Robotics Workshop, Vancouver, B.C, August,

2007.

[19]K. Wyobek, E. Berger, H. V. der Loos, and K. Salisbury, “Towards a

personal robotics development platform: Rationale and design of an

intrinsically safe personal robot,” in Proc. of the IEEE Intl. Conf. on

Robotics and Automation (ICRA), 2008.

[20]M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization in

mobile robot programming: The Carnegie Mellon Navigation (CARMEN)

Toolkit,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS), Las Vegas, Nevada, Oct. 2003, pp. 2436–2441.

[21]A. Makarenko, A. Brooks, and T. Kaupp, in Proc. of the IEEE/RSJ Intl.

Conf. on Intelligent Robots and Systems (IROS), Nov. 2007.

[22]R. T. Vaughan and B. P. Gerkey, “Reusable robot code and the Player/Stage

Project,” in Software Engineering for Experimental Robotics, ser. Springer

Tracts on Advanced Robotics, D. Brugali, Ed. Springer, 2007, pp. 267–289.

[23]G. Bradski and A. Kaehler, Learning OpenCV, Sep. 2008.

[24]R. Diankov and J. Kuffner, “The robotic busboy: Steps towards developing

a mobile robotic home assistant,” in Intelligent Autonomous Systems, vol.

10, 2008.

[25] J. Jackson, “Microsoft robotics studio: A technical introduction,” in IEEE

Robotics and Automation Magazine, Dec. 2007, http://msdn.

microsoft.com/en-us/robotics.

[26]O. Michel, “Webots: a powerful realistic mobile robots simulator,” in Proc.

of the Second Intl. Workshop on RoboCup. Springer-Verlag, 1998.M. King,

B. Zhu, and S. Tang, “Optimal path planning,” Mobile Robots, vol. 8, no. 2,

pp. 520-531, March 2001.

[27]H. Simpson, Dumb Robots, 3rd ed., Springfield: UOS Press, 2004, pp.6-9.

[28]M. King and B. Zhu, “Gaming strategies,” in Path Planning to the West, vol.

II, S. Tang and M. King, Eds. Xian: Jiaoda Press, 1998, pp. 158-176.

[29]B. Simpson, et al, “Title of paper goes here if known,” unpublished.

[30]J.-G. Lu, “Title of paper with only the first word capitalized,” J. Name

Stand. Abbrev., in press.

[31]Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE

Translated J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digest 9th

Annual Conf. Magnetics Japan, p. 301, 1982].

[32]M. Young, The Technical Writer’s Handbook, Mill Valley, CA: University

Science, 1989.

TTIC, 2017, Vol.1, 27-33

33

	TTIC-Volume 1_Part31
	TTIC-Volume 1_Part32
	TTIC-Volume 1_Part33
	TTIC-Volume 1_Part34
	TTIC-Volume 1_Part35
	TTIC-Volume 1_Part36
	TTIC-Volume 1_Part37

